特征值分解、奇异值分解、PCA概念整理

2024-06-12 15:18

本文主要是介绍特征值分解、奇异值分解、PCA概念整理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

特征值分解、奇异值分解、PCA概念整理



一、特征值与特征向量的几何意义

1.     矩阵乘法

在介绍特征值与特征向量的几何意义之前,先介绍矩阵乘法的几何意义。

矩阵乘法对应了一个变换,是把任意一个向量变成另一个方向或长度的新向量。在这个变化过程中,原向量主要发生旋转、伸缩的变化。如果矩阵对某些向量只发生伸缩变换,不产生旋转效果,那么这些向量就称为这个矩阵的特征向量,伸缩的比例就是特征值

比如:,它对应的线性变换是下面的形式形式:


因为,这个矩阵乘以一个向量(x,y)的结果是:。由于矩阵M是对称的,所以这个变换是一个对 x , y 轴的一个拉伸变换。【当M中元素值大于1时,是拉伸;当值小于1时,是缩短

那么如果矩阵M不是对称的,比如:,它所描述的变换如下图所示:


这其实是在平面上对一个轴进行的拉伸变换【如蓝色箭头所示】,在图中蓝色箭头是一个最主要的变化方向。变化方向可能有不止一个,但如果我们想要描述好一个变换,那我们就描述好这个变换主要的变化方向就好了

2.     特征值分解与特征向量

如果说一个向量v是方阵A的特征向量,将一定可以表示成下面的形式:


λ为特征向量 v 对应的特征值。特征值分解是将一个矩阵分解为如下形式:

其中,Q是这个矩阵A的特征向量组成的矩阵,Σ是一个对角矩阵,每一个对角线元素就是一个特征值,里面的特征值是由大到小排列的,这些特征值所对应的特征向量就是描述这个矩阵变化方向(从主要的变化到次要的变化排列)。也就是说矩阵A的信息可以由其特征值和特征向量表示。

对于矩阵为高维的情况下,那么这个矩阵就是高维空间下的一个线性变换。可以想象,这个变换也同样有很多的变换方向,我们通过特征值分解得到的前N个特征向量,那么就对应了这个矩阵最主要的N个变化方向。我们利用这前N个变化方向,就可以近似这个矩阵(变换)。

总结一下,特征值分解可以得到特征值与特征向量,特征值表示的是这个特征到底有多重要,而特征向量表示这个特征是什么。不过,特征值分解也有很多的局限,比如说变换的矩阵必须是方阵。


二、奇异值分解

1.     奇异值

特征值分解是一个提取矩阵特征很不错的方法,但是它只是对方阵而言的,在现实的世界中,我们看到的大部分矩阵都不是方阵,比如说有N个学生,每个学生有M科成绩,这样形成的一个N * M的矩阵就不可能是方阵,我们怎样才能描述这样普通的矩阵呢的重要特征呢?奇异值分解可以用来干这个事情,奇异值分解是一个能适用于任意的矩阵的一种分解的方法:

分解形式:

假设A是一个M * N的矩阵,那么得到的U是一个M * M的方阵(称为左奇异向量),Σ是一个M * N的矩阵(除了对角线的元素都是0,对角线上的元素称为奇异值),VT(V的转置)是一个N * N的矩阵(称为右奇异向量)。


2.     奇异值与特征值

那么奇异值和特征值是怎么对应起来的呢?我们将一个矩阵A的转置乘以 A,并对( A T A )求特征值,则有下面的形式:


这里V就是上面的右奇异向量,另外还有:

这里的σ就是奇异值,u就是上面说的左奇异向量。【证明那个哥们也没给

奇异值σ跟特征值类似,在矩阵Σ中也是从大到小排列,而且σ的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上了。也就是说,我们也可以用前r( r远小于m、n )个的奇异值来近似描述矩阵,即部分奇异值分解:

右边的三个矩阵相乘的结果将会是一个接近于A的矩阵,在这儿,r越接近于n,则相乘的结果越接近于A。


三、PCA主成份分析

主成分分析(PrincipalComponents Analysis。即PCA,也称为K-L变换),是图像压缩中的一种最优正交变换。PCA用于统计特征提取构成了子空间法模式识别的基础。它从图像整体代数特征出发,基于图像的总体信息进行分类识别。PCA的核心思想是利用较少数量的特征对样本进行描述以达到降低特征空间维数的目的。

1.  PCA理论

给定一副N*N大小图像,将它表示成一个N2*1维向量,向量中元素为像素点灰度,按行存储,如下列公式分别表示第i张图片和n张图片平均值:


令N2*n矩阵X为:


注意,矩阵减去平均值相当于将坐标系原点移动到平均值位置。

设Q=XXT,则Q是一个N2* N2矩阵:


,Q是方阵

,Q是对称矩阵。

,Q被成为协方差矩阵,

,Q的数据量非常庞大

    那么,X中的每个元素xj可以被如下表达:


其中,ei是Q中非零特征值对应的特征向量。由特征向量e1,e2,…,en组成的空间叫做张成特征空间。对于N*N图像,e1,e2,…,en是N2*1维相互正交的向量。尺度gji是xj在空间中的坐标。


2.  实现PCA

为了降维,可以对特征值设定阈值或按照其他准则,寻找协方差矩阵Q中前k个特征向量。这里Q十分庞大,对于一副256*256的图像,Q的大小为65536*65536!替代方案是,考虑矩阵


.P和Q都是对称矩阵

.P≠QT

.Q的大小是N2*N2,而P大小为n*n

.n为训练样本图像数量,通常n<<N

设e是矩阵P的特征值λ对应的特征向量,则有:




这里,X*e也是矩阵Q的特征值λ对应的特征向量【这是用求特征值分解方法,下面介绍用SVD方法】


3.  PCA与奇异值分解SVD

任何一个m*n矩阵都能进行奇异值分解,拆分为3个矩阵相乘的形式。由于SVD得出的奇异向量也是从奇异值由大到小排列的,按PCA的观点来看,就是方差最大的坐标轴就是第一个奇异向量,方差次大的坐标轴就是第二个奇异向量…。我们可以对Q进行奇异值分解。


.U就是QQT的特征向量

.V就是QTQ的特征向量

.D中奇异值的平方就是QQT和QTQ的特征值

这篇关于特征值分解、奇异值分解、PCA概念整理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1054578

相关文章

数论入门整理(updating)

一、gcd lcm 基础中的基础,一般用来处理计算第一步什么的,分数化简之类。 LL gcd(LL a, LL b) { return b ? gcd(b, a % b) : a; } <pre name="code" class="cpp">LL lcm(LL a, LL b){LL c = gcd(a, b);return a / c * b;} 例题:

【VUE】跨域问题的概念,以及解决方法。

目录 1.跨域概念 2.解决方法 2.1 配置网络请求代理 2.2 使用@CrossOrigin 注解 2.3 通过配置文件实现跨域 2.4 添加 CorsWebFilter 来解决跨域问题 1.跨域概念 跨域问题是由于浏览器实施了同源策略,该策略要求请求的域名、协议和端口必须与提供资源的服务相同。如果不相同,则需要服务器显式地允许这种跨域请求。一般在springbo

【MRI基础】TR 和 TE 时间概念

重复时间 (TR) 磁共振成像 (MRI) 中的 TR(重复时间,repetition time)是施加于同一切片的连续脉冲序列之间的时间间隔。具体而言,TR 是施加一个 RF(射频)脉冲与施加下一个 RF 脉冲之间的持续时间。TR 以毫秒 (ms) 为单位,主要控制后续脉冲之前的纵向弛豫程度(T1 弛豫),使其成为显著影响 MRI 中的图像对比度和信号特性的重要参数。 回声时间 (TE)

rtmp流媒体编程相关整理2013(crtmpserver,rtmpdump,x264,faac)

转自:http://blog.163.com/zhujiatc@126/blog/static/1834638201392335213119/ 相关资料在线版(不定时更新,其实也不会很多,也许一两个月也不会改) http://www.zhujiatc.esy.es/crtmpserver/index.htm 去年在这进行rtmp相关整理,其实内容早有了,只是整理一下看着方

笔记整理—内核!启动!—kernel部分(2)从汇编阶段到start_kernel

kernel起始与ENTRY(stext),和uboot一样,都是从汇编阶段开始的,因为对于kernel而言,还没进行栈的维护,所以无法使用c语言。_HEAD定义了后面代码属于段名为.head .text的段。         内核起始部分代码被解压代码调用,前面关于uboot的文章中有提到过(eg:zImage)。uboot启动是无条件的,只要代码的位置对,上电就工作,kern

JavaScript整理笔记

JavaScript笔记 JavaScriptJavaScript简介快速入门JavaScript用法基础语法注释关键字显示数据输出innerHTML innerText属性返回值的区别调试 数据类型和变量数据类型数字(Number)字符串(String)布尔值(Boolean)null(空值)和undefined(未定义)数组(Array)对象(Object)函数(Function) 变量

计算机网络基础概念 交换机、路由器、网关、TBOX

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、VLAN是什么?二 、交换机三、路由器四、网关五、TBOXTelematics BOX,简称车载T-BOX,车联网系统包含四部分,主机、车载T-BOX、手机APP及后台系统。主机主要用于车内的影音娱乐,以及车辆信息显示;车载T-BOX主要用于和后台系统/手机APP通信,实现手机APP的车辆信息显示与控

01 Docker概念和部署

目录 1.1 Docker 概述 1.1.1 Docker 的优势 1.1.2 镜像 1.1.3 容器 1.1.4 仓库 1.2 安装 Docker 1.2.1 配置和安装依赖环境 1.3镜像操作 1.3.1 搜索镜像 1.3.2 获取镜像 1.3.3 查看镜像 1.3.4 给镜像重命名 1.3.5 存储,载入镜像和删除镜像 1.4 Doecker容器操作 1.4

【机器学习-一-基础概念篇】

机器学习 定义分类算法 应用 定义 机器学习最早是被Arthur Samuel 提出的一个概念,指计算机无需明确编程即可学习的研究领域。1950年他发明的跳棋程序,这个人机对弈游戏让他的声名鹊起,机器学习这个概念才进入大众的是视线。 在这个跳棋程序里,他编程了一种算法,这个程序与Arthur下了数万次跳棋,计算机逐渐学会了下在哪里有更大的可能会赢得比赛,哪里会输,通过这种方法,最

【吊打面试官系列-Redis面试题】说说 Redis 哈希槽的概念?

大家好,我是锋哥。今天分享关于 【说说 Redis 哈希槽的概念?】面试题,希望对大家有帮助; 说说 Redis 哈希槽的概念? Redis 集群没有使用一致性 hash,而是引入了哈希槽的概念,Redis 集群有 16384 个哈希槽,每个 key 通过 CRC16 校验后对 16384 取模来决定放置哪个槽, 集群的每个节点负责一部分 hash 槽。