AP_HAL 分析, 以pixhawk-fmuv2为硬件平台,ChibiOS为底层操作系统:

2024-06-12 14:18

本文主要是介绍AP_HAL 分析, 以pixhawk-fmuv2为硬件平台,ChibiOS为底层操作系统:,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. class AP_HAL::AP_HAL,该接口类聚合了所有提供给应用层的硬件接口

class AP_HAL::HAL {
public:HAL(AP_HAL::UARTDriver* _uartA, // consoleAP_HAL::UARTDriver* _uartB, // 1st GPSAP_HAL::UARTDriver* _uartC, // telem1AP_HAL::UARTDriver* _uartD, // telem2AP_HAL::UARTDriver* _uartE, // 2nd GPSAP_HAL::UARTDriver* _uartF, // extra1AP_HAL::UARTDriver* _uartG, // extra2AP_HAL::I2CDeviceManager* _i2c_mgr,AP_HAL::SPIDeviceManager* _spi,AP_HAL::AnalogIn*   _analogin,AP_HAL::Storage*    _storage,AP_HAL::UARTDriver* _console,AP_HAL::GPIO*       _gpio,AP_HAL::RCInput*    _rcin,AP_HAL::RCOutput*   _rcout,AP_HAL::Scheduler*  _scheduler,AP_HAL::Util*       _util,AP_HAL::OpticalFlow *_opticalflow,AP_HAL::Flash *_flash,
#if HAL_WITH_UAVCANAP_HAL::CANManager* _can_mgr[MAX_NUMBER_OF_CAN_DRIVERS])
#elseAP_HAL::CANManager** _can_mgr)
#endif:uartA(_uartA),uartB(_uartB),uartC(_uartC),uartD(_uartD),uartE(_uartE),uartF(_uartF),uartG(_uartG),i2c_mgr(_i2c_mgr),spi(_spi),analogin(_analogin),storage(_storage),console(_console),gpio(_gpio),rcin(_rcin),rcout(_rcout),scheduler(_scheduler),util(_util),opticalflow(_opticalflow),flash(_flash){
#if HAL_WITH_UAVCANif (_can_mgr == nullptr) {for (uint8_t i = 0; i < MAX_NUMBER_OF_CAN_DRIVERS; i++)can_mgr[i] = nullptr;} else {for (uint8_t i = 0; i < MAX_NUMBER_OF_CAN_DRIVERS; i++)can_mgr[i] = _can_mgr[i];}
#endifAP_HAL::init();}struct Callbacks {virtual void setup() = 0;virtual void loop() = 0;};struct FunCallbacks : public Callbacks {FunCallbacks(void (*setup_fun)(void), void (*loop_fun)(void));void setup() override { _setup(); }void loop() override { _loop(); }private:void (*_setup)(void);void (*_loop)(void);};virtual void run(int argc, char * const argv[], Callbacks* callbacks) const = 0;AP_HAL::UARTDriver* uartA;AP_HAL::UARTDriver* uartB;AP_HAL::UARTDriver* uartC;AP_HAL::UARTDriver* uartD;AP_HAL::UARTDriver* uartE;AP_HAL::UARTDriver* uartF;AP_HAL::UARTDriver* uartG;AP_HAL::I2CDeviceManager* i2c_mgr;AP_HAL::SPIDeviceManager* spi;AP_HAL::AnalogIn*   analogin;AP_HAL::Storage*    storage;AP_HAL::UARTDriver* console;AP_HAL::GPIO*       gpio;AP_HAL::RCInput*    rcin;AP_HAL::RCOutput*   rcout;AP_HAL::Scheduler*  scheduler;AP_HAL::Util        *util;AP_HAL::OpticalFlow *opticalflow;AP_HAL::Flash       *flash;
#if HAL_WITH_UAVCANAP_HAL::CANManager* can_mgr[MAX_NUMBER_OF_CAN_DRIVERS];
#elseAP_HAL::CANManager** can_mgr;
#endif
};

继承关系
AP_HAL继承关系

我们看到ardupilot中有四大系统平台(这里的系统平台指的是基于硬件平台的操作系统和底层驱动的集合,系统平台也可以是虚拟的)实现了该接口类,我们这里分析HAL_ChibiOS

2. class HAL_ChibiOS 实现了AP_HAL::HAL接口类

class HAL_ChibiOS : public AP_HAL::HAL {
public:HAL_ChibiOS();void run(int argc, char* const* argv, Callbacks* callbacks) const override;
};
在实现文件中我们看到:
static HAL_UARTA_DRIVER; ///< #define HAL_UARTA_DRIVER ChibiOS::UARTDriver uartADriver(0)
static HAL_UARTB_DRIVER; ///< #define HAL_UARTB_DRIVER ChibiOS::UARTDriver uartBDriver(1)
static HAL_UARTC_DRIVER; ///< #define HAL_UARTC_DRIVER ChibiOS::UARTDriver uartCDriver(2)
static HAL_UARTD_DRIVER; ///< #define HAL_UARTD_DRIVER ChibiOS::UARTDriver uartDDriver(3)
static HAL_UARTE_DRIVER; ///< #define HAL_UARTE_DRIVER ChibiOS::UARTDriver uartEDriver(4)
static HAL_UARTF_DRIVER; ///< #define HAL_UARTF_DRIVER ChibiOS::UARTDriver uartFDriver(5)
static HAL_UARTG_DRIVER; ///< #define HAL_UARTG_DRIVER Empty::UARTDriver uartGDriver
///< 前面这些宏定义在build/fmuv2/hwdef.h头文件中, 该头文件在编译时由python脚本从hwdef.dat文件中解析然后生成
///< 我们这里的硬件平台的硬件定义文件位于:ardupilot/libraries/AP_HAL_ChibiOS/hwdef/fmuv2/hwdef.dat
static ChibiOS::I2CDeviceManager i2cDeviceManager;
static ChibiOS::SPIDeviceManager spiDeviceManager;
static ChibiOS::AnalogIn analogIn;
static ChibiOS::Storage storageDriver;
static ChibiOS::GPIO gpioDriver;
static ChibiOS::RCInput rcinDriver;
static ChibiOS::RCOutput rcoutDriver;
static ChibiOS::Scheduler schedulerInstance;
static ChibiOS::Util utilInstance;
static Empty::OpticalFlow opticalFlowDriver;
static ChibiOS::Flash flashDriver;

在构造函数中,这些对象会被传递进去:

HAL_ChibiOS::HAL_ChibiOS() :AP_HAL::HAL(&uartADriver,&uartBDriver,&uartCDriver,&uartDDriver,&uartEDriver,&uartFDriver,&uartGDriver,&i2cDeviceManager,&spiDeviceManager,&analogIn,&storageDriver,&uartADriver,&gpioDriver,&rcinDriver,&rcoutDriver,&schedulerInstance,&utilInstance,&opticalFlowDriver,&flashDriver,nullptr)
{}

3. 我们进入到具体的uartADriver实例对应的类ChibiOS::UARTDriver中,其属于AP_HAL::UARTDriver接口的实现

继承关系
可以看到,四大系统平台都分别实现了AP_HAL::UARTDriver接口
协作图

class ChibiOS::UARTDriver : public AP_HAL::UARTDriver { ///< 
public:UARTDriver(uint8_t serial_num);void begin(uint32_t b) override;void begin(uint32_t b, uint16_t rxS, uint16_t txS) override;void end() override;void flush() override;bool is_initialized() override;void set_blocking_writes(bool blocking) override;bool tx_pending() override;uint32_t available() override;uint32_t txspace() override;int16_t read() override;int16_t read_locked(uint32_t key) override;void _timer_tick(void) override;size_t write(uint8_t c) override;size_t write(const uint8_t *buffer, size_t size) override;// lock a port for exclusive use. Use a key of 0 to unlockbool lock_port(uint32_t write_key, uint32_t read_key) override;// control optional featuresbool set_options(uint8_t options) override;// write to a locked port. If port is locked and key is not correct then 0 is returned// and write is discardedsize_t write_locked(const uint8_t *buffer, size_t size, uint32_t key) override;struct SerialDef {BaseSequentialStream* serial;bool is_usb;bool dma_rx;uint8_t dma_rx_stream_id;uint32_t dma_rx_channel_id;bool dma_tx;uint8_t dma_tx_stream_id;uint32_t dma_tx_channel_id; ioline_t rts_line;int8_t rxinv_gpio;uint8_t rxinv_polarity;int8_t txinv_gpio;uint8_t txinv_polarity;uint8_t get_index(void) const {return uint8_t(this - &_serial_tab[0]);}};bool wait_timeout(uint16_t n, uint32_t timeout_ms) override;void set_flow_control(enum flow_control flow_control) override;enum flow_control get_flow_control(void) override { return _flow_control; }// allow for low latency writesbool set_unbuffered_writes(bool on) override;void configure_parity(uint8_t v) override;void set_stop_bits(int n) override;/*return timestamp estimate in microseconds for when the start ofa nbytes packet arrived on the uart. This should be treated as atime constraint, not an exact time. It is guaranteed that thepacket did not start being received after this time, but itcould have been in a system buffer before the returned time.This takes account of the baudrate of the link. For transportsthat have no baudrate (such as USB) the time estimate may beless accurate.A return value of zero means the HAL does not support this API*/uint64_t receive_time_constraint_us(uint16_t nbytes) override;uint32_t bw_in_kilobytes_per_second() const override {if (sdef.is_usb) {return 200;}return _baudrate/(9*1024);}private:bool tx_bounce_buf_ready;const SerialDef &sdef;// thread used for all UARTsstatic thread_t *uart_thread_ctx;// table to find UARTDrivers from serial number, used for event handlingstatic UARTDriver *uart_drivers[UART_MAX_DRIVERS];// index into uart_drivers tableuint8_t serial_num;// key for a locked portuint32_t lock_write_key;uint32_t lock_read_key;uint32_t _baudrate;uint16_t tx_len;
#if HAL_USE_SERIAL == TRUESerialConfig sercfg;
#endifconst thread_t* _uart_owner_thd;struct {// thread waiting for datathread_t *thread_ctx;// number of bytes neededuint16_t n;} _wait;// we use in-task ring buffers to reduce the system call cost// of ::read() and ::write() in the main loop,使用ringbuffer降低mainloop中read/write系统调用开销uint8_t *rx_bounce_buf;///< 接收弹性bufferuint8_t *tx_bounce_buf;///< 发送弹性bufferByteBuffer _readbuf{0}; ///< 接收ringbufferByteBuffer _writebuf{0};///< 发送ringbufferSemaphore _write_mutex;const stm32_dma_stream_t* rxdma; ///< 接收dmaconst stm32_dma_stream_t* txdma; ///< 发送dmavirtual_timer_t tx_timeout;    bool _in_timer;bool _blocking_writes;bool _initialised;bool _device_initialised;bool _lock_rx_in_timer_tick = false;Shared_DMA *dma_handle;static const SerialDef _serial_tab[];// timestamp for receiving data on the UART, avoiding a lockuint64_t _receive_timestamp[2];uint8_t _receive_timestamp_idx;// handling of flow controlenum flow_control _flow_control = FLOW_CONTROL_DISABLE;bool _rts_is_active;uint32_t _last_write_completed_us;uint32_t _first_write_started_us;uint32_t _total_written;// we remember cr2 and cr2 options from set_options to apply on sdStart()uint32_t _cr3_options;uint32_t _cr2_options;// half duplex control. After writing we throw away bytes for 4 byte widths to// prevent reading our own bytes backbool half_duplex;uint32_t hd_read_delay_us;uint32_t hd_write_us;void half_duplex_setup_delay(uint16_t len);// set to true for unbuffered writes (low latency writes)bool unbuffered_writes;static void rx_irq_cb(void* sd);static void rxbuff_full_irq(void* self, uint32_t flags);static void tx_complete(void* self, uint32_t flags);static void handle_tx_timeout(void *arg);void dma_tx_allocate(Shared_DMA *ctx);void dma_tx_deallocate(Shared_DMA *ctx);void update_rts_line(void);void check_dma_tx_completion(void);void write_pending_bytes_DMA(uint32_t n);void write_pending_bytes_NODMA(uint32_t n);void write_pending_bytes(void);void receive_timestamp_update(void);void thread_init();static void uart_thread(void *);
};

QA1.

  1. 首先,HAL_ChibiOS 是 AP_HAL::HAL这个抽象类的 以ChibiOS为具体操作系统的派生类,所以按照C++惯例,子类构造函数中显式调用基类构造函数即AP_HAL::HAL();
  2. HAL_ChibiOS 相当于已经落实到了具象的操作系统软件硬件平台,比如uartA,他提供具体的:

static HAL_UARTA_DRIVER;

而宏在具体的硬件定义比如fmuv2/ArduPilot_743头文件hwdef.h中:

#define HAL_UARTA_DRIVER ChibiOS::UARTDriver uartADriver(0)

替换完成就是:

ChibiOS::UARTDriver uartADriver(0)

也就是使用ChibiOS领域(namespace)内的UARTDriver 实例化一个对象 uartADriver 并将其地址传入到AP_HAL::HAL基类构造函数中,利用多态特性完成抽象到具体的特化,因为具体的业务逻辑比如ArduCopter或APMrover等凡是在涉及具体软硬件平台方面的操作都是面向接口编程的

故而可以总结业务逻辑层:               ArduCopter ... APMrover\       |         /	-----AP_HAL 层---||----------------------------------/                |                 \软硬件平台层:ChibiOS+fmuv2 ...ChibiOS+fmuv5... linux+树莓派等

这篇关于AP_HAL 分析, 以pixhawk-fmuv2为硬件平台,ChibiOS为底层操作系统:的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1054453

相关文章

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

MySQL中的MVCC底层原理解读

《MySQL中的MVCC底层原理解读》本文详细介绍了MySQL中的多版本并发控制(MVCC)机制,包括版本链、ReadView以及在不同事务隔离级别下MVCC的工作原理,通过一个具体的示例演示了在可重... 目录简介ReadView版本链演示过程总结简介MVCC(Multi-Version Concurr

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

高效管理你的Linux系统: Debian操作系统常用命令指南

《高效管理你的Linux系统:Debian操作系统常用命令指南》在Debian操作系统中,了解和掌握常用命令对于提高工作效率和系统管理至关重要,本文将详细介绍Debian的常用命令,帮助读者更好地使... Debian是一个流行的linux发行版,它以其稳定性、强大的软件包管理和丰富的社区资源而闻名。在使用

龙蜥操作系统Anolis OS-23.x安装配置图解教程(保姆级)

《龙蜥操作系统AnolisOS-23.x安装配置图解教程(保姆级)》:本文主要介绍了安装和配置AnolisOS23.2系统,包括分区、软件选择、设置root密码、网络配置、主机名设置和禁用SELinux的步骤,详细内容请阅读本文,希望能对你有所帮助... ‌AnolisOS‌是由阿里云推出的开源操作系统,旨

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re