Java并发编程---Disruptor体验

2024-06-12 14:08

本文主要是介绍Java并发编程---Disruptor体验,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近在学习中接触到Disruptor这个框架,虽然目前没有能实际运用到项目中,但是做个了解,在面试吹牛逼?的时候还能避免尴尬!学的不深,仅限于简单的使用和特性的认识。

什么是Disruptor


  • Martin Fowler在自己网站上写了一篇LMAX架构的文章,在文章中他介绍了LMAX是一种新型零售金融交易平台,它能够以很低的延迟产生大量交易。这个系统是建立在JVM平台上,其核心是一个业务逻辑处理器,它能够在一个线程里每秒处理6百万订单。业务逻辑处理器完全是运行在内存中,使`用事件源驱动方式。业务逻辑处理器的核心是Disruptor。

  • Disruptor它是一个开源的并发框架,并获得2011 Duke’s 程序框架创新奖,能够在无锁的情况下实现网络的Queue并发操作。Disruptor是一个高性能的异步处理框架,或者可以认为是最快的消息框架(轻量的JMS),也可以认为是一个观察者模式的实现,或者事件监听模式的实现。

从功能上来看,Disruptor 是实现了“队列”的功能,而且是一个有界队列。那么它的应用场景自然就是“生产者-消费者”模型的应用场合了。
可以拿 JDK 的 BlockingQueue 做一个简单对比,以便更好地认识 Disruptor 是什么。

我们知道 BlockingQueue 是一个 FIFO 队列,生产者(Producer)往队列里发布(publish)一项事件(或称之为“消息”也可以)时,消费者(Consumer)能获得通知;如果没有事件时,消费者被堵塞,直到生产者发布了新的事件。

BlockingQueue是基于锁实现的, 而锁的效率通常较低. 没有使用CAS机制实现。而Disruptor使用观察者模式, 主动将消息发送给消费者, 而不是等消费者从队列中取; 在无锁的情况下, 实现queue(环形, RingBuffer)的并发操作, 性能远高于BlockingQueue

Disruptor的设计方案

Disruptor通过以下设计来解决队列速度慢的问题:

  • 环形数组结构
    为了避免垃圾回收,采用数组而非链表。同时,数组对处理器的缓存机制更加友好。
  • 元素位置定位
    数组长度2^n,通过位运算,加快定位的速度。下标采取递增的形式。不用担心index溢出的问题。index是long类型,即使100万QPS的处理速度,也需要30万年才能用完。
  • 无锁设计
    每个生产者或者消费者线程,会先申请可以操作的元素在数组中的位置,申请到之后,直接在该位置写入或者读取数据。

Disruptor核心

在这里插入图片描述

  • Ring Buffer
    Disruptor底层数据结构实现,核心类,是线程间交换数据的中转地
  • Sequence Disruptor
    通过顺序递增的序号来编号管理通过其进行交换的数据(事件),对数据(事件)的处理过程总是沿着序号逐个递增处理。一个 Sequence 用于跟踪标识某个特定的事件处理者( RingBuffer/Consumer )的处理进度。虽然一个 AtomicLong 也可以用于标识进度,但定义 Sequence 来负责该问题还有另一个目的,那就是防止不同的 Sequence 之间的CPU缓存伪共享(Flase Sharing)问题。
    (注:这是 Disruptor 实现高性能的关键点之一,网上关于伪共享问题的介绍已经汗牛充栋,在此不再赘述)。
  • Sequencer
    Sequencer 是 Disruptor 的真正核心。此接口有两个实现类 SingleProducerSequencer、MultiProducerSequencer ,它们定义在生产者和消费者之间快速、正确地传递数据的并发算法。
  • Sequence Barrier
    用于保持对RingBuffer的 main published Sequence 和Consumer依赖的其它Consumer的 Sequence 的引用。 Sequence Barrier 还定义了决定 Consumer 是否还有可处理的事件的逻辑。
  • Wait Strategy
    定义 Consumer 如何进行等待下一个事件的策略。 (注:Disruptor 定义了多种不同的策略,针对不同的场景,提供了不一样的性能表现)
  • Event
    在 Disruptor 的语义中,生产者和消费者之间进行交换的数据被称为事件(Event)。它不是一个被 Disruptor 定义的特定类型,而是由 Disruptor 的使用者定义并指定。
  • EventProcessor
    EventProcessor 持有特定消费者(Consumer)的 Sequence,并提供用于调用事件处理实现的事件循环(Event Loop)。
  • EventHandler
    Disruptor 定义的事件处理接口,由用户实现,用于处理事件,是 Consumer 的真正实现。
  • Producer
    即生产者,只是泛指调用 Disruptor 发布事件的用户代码,Disruptor 没有定义特定接口或类型。

什么是RingBuffer

它是一个环(首尾相接的环),你可以把它用做在不同上下文(线程)间传递数据的buffer。

在这里插入图片描述

随着不停地填充这个buffer(可能也会有相应的读取),这个序号会一直增长,直到超过这个环。

在这里插入图片描述

Disruptor要求数组大小设置为2的N次方。这样可以通过Seq & (QueueSize - 1) 直接获取,其效率要比取模快得多。这是因为(Queue - 1)的二进制为全1等形式。例如,上图中QueueSize大小为8,Seq为10,则只需要计算二进制1010 & 0111 = 2,可直接得到index=2位置的元素。

在RingBuffer中,生产者向数组中写入数据,生产者写入数据时,使用CAS操作。消费者从中读取数据时,为防止多个消费者同时处理一个数据,也使用CAS操作进行数据保护。

Disruptor简单使用

  1. 引入maven依赖或导入jar包
	<dependencies><dependency><groupId>com.lmax</groupId><artifactId>disruptor</artifactId><version>3.2.1</version></dependency></dependencies>
  1. 定义事件
// 定义事件event  通过  Disruptor 进行交换的数据类型。
public class LongEvent {private long value;public long getValue() {return value;}public void setValue(long value) {this.value = value;}}
  1. 定义事件工厂
    事件工厂(Event Factory)定义了如何实例化前面第1步中定义的事件(Event),需要实现接口 com.lmax.disruptor.EventFactory。
    Disruptor 通过 EventFactory 在 RingBuffer 中预创建 Event 的实例。
    一个 Event 实例实际上被用作一个“数据槽”,发布者发布前,先从 RingBuffer 获得一个 Event 的实例,然后往 Event 实例中填充数据,之后再发布到 RingBuffer 中,之后由 Consumer 获得该 Event 实例并从中读取数据。
//EventFactory来实例化Event对象。
public class LongEventFactory implements EventFactory<LongEvent> {public LongEvent newInstance() {// TODO Auto-generated method stubreturn new LongEvent();}}
  1. 定义事件处理的具体实现
    通过实现接口 com.lmax.disruptor.EventHandler 定义事件处理的具体实现。
// 事件消费者 这个事件处理器简单地把事件中存储的数据打印到终端:
public class LongEventHandler  implements EventHandler<LongEvent>{public void onEvent(LongEvent arg0, long arg1, boolean arg2) throws Exception {System.out.println("消费者:"+arg0.getValue());}}

5.定义生产者发送数据

//定义生产这发送事件
public class LongEventProducer {public final RingBuffer<LongEvent> ringBuffer;public LongEventProducer(RingBuffer<LongEvent> ringBuffer) {this.ringBuffer = ringBuffer;}public void onData(ByteBuffer byteBuffer) {// 1.ringBuffer 事件队列 下一个槽long sequence = ringBuffer.next();Long data = null;try {// 2.取出空的事件队列LongEvent longEvent = ringBuffer.get(sequence);data = byteBuffer.getLong(0);// 3.获取事件队列传递的数据longEvent.setValue(data);try {Thread.sleep(10);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();}} finally {System.out.println("生产这准备发送数据");// 4.发布事件ringBuffer.publish(sequence);}}}

6.启动 Disruptor

public class DisruptorMain {public static void main(String[] args) {// 1.创建一个可缓存的线程 提供线程来给Consumer 的事件处理ExecutorService executor = Executors.newCachedThreadPool();// 2.创建工厂EventFactory<LongEvent> eventFactory = new LongEventFactory();// 3.创建ringBuffer 大小int ringBufferSize = 1024 * 1024; // ringBufferSize大小一定要是2的N次方// 4.创建Disruptor@SuppressWarnings("deprecation")Disruptor<LongEvent> disruptor = new Disruptor<LongEvent>(eventFactory, ringBufferSize, executor,ProducerType.SINGLE, new YieldingWaitStrategy());// 5.连接消费端方法disruptor.handleEventsWith(new LongEventHandler());// 多个消费者使用是重复取值并不是均摊// 6.启动disruptor.start();// 7.创建RingBuffer容器RingBuffer<LongEvent> ringBuffer = disruptor.getRingBuffer();// 8.创建生产者LongEventProducer producer = new LongEventProducer(ringBuffer);// 9.指定缓冲区大小ByteBuffer byteBuffer = ByteBuffer.allocate(8);for (int i = 1; i <= 100; i++) {byteBuffer.putLong(0, i);producer.onData(byteBuffer);}// 10.关闭disruptor和executordisruptor.shutdown();executor.shutdown();}}

特殊说明:

  • BlockingWaitStrategy 是最低效的策略,但其对CPU的消耗最小并且在各种不同部署环境中能提供更加一致的性能表现;
  • SleepingWaitStrategy 的性能表现跟 BlockingWaitStrategy 差不多,对 CPU 的消耗也类似,但其对生产者线程的影响最小,适合用于异步日志类似的场景;
  • YieldingWaitStrategy 的性能是最好的,适合用于低延迟的系统。在要求极高性能且事件处理线数小于 CPU 逻辑核心数的场景中,推荐使用此策略;例如,CPU开启超线程的特性。

总结


理解不深,有待完善!

附录:

Disruptor GitHub地址: https://github.com/LMAX-Exchange/disruptor

这篇关于Java并发编程---Disruptor体验的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1054436

相关文章

springboot健康检查监控全过程

《springboot健康检查监控全过程》文章介绍了SpringBoot如何使用Actuator和Micrometer进行健康检查和监控,通过配置和自定义健康指示器,开发者可以实时监控应用组件的状态,... 目录1. 引言重要性2. 配置Spring Boot ActuatorSpring Boot Act

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

java如何分布式锁实现和选型

《java如何分布式锁实现和选型》文章介绍了分布式锁的重要性以及在分布式系统中常见的问题和需求,它详细阐述了如何使用分布式锁来确保数据的一致性和系统的高可用性,文章还提供了基于数据库、Redis和Zo... 目录引言:分布式锁的重要性与分布式系统中的常见问题和需求分布式锁的重要性分布式系统中常见的问题和需求

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

在Ubuntu上部署SpringBoot应用的操作步骤

《在Ubuntu上部署SpringBoot应用的操作步骤》随着云计算和容器化技术的普及,Linux服务器已成为部署Web应用程序的主流平台之一,Java作为一种跨平台的编程语言,具有广泛的应用场景,本... 目录一、部署准备二、安装 Java 环境1. 安装 JDK2. 验证 Java 安装三、安装 mys

Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单

《Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单》:本文主要介绍Springboot的ThreadPoolTaskScheduler线... 目录ThreadPoolTaskScheduler线程池实现15分钟不操作自动取消订单概要1,创建订单后

JAVA中整型数组、字符串数组、整型数和字符串 的创建与转换的方法

《JAVA中整型数组、字符串数组、整型数和字符串的创建与转换的方法》本文介绍了Java中字符串、字符数组和整型数组的创建方法,以及它们之间的转换方法,还详细讲解了字符串中的一些常用方法,如index... 目录一、字符串、字符数组和整型数组的创建1、字符串的创建方法1.1 通过引用字符数组来创建字符串1.2

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python