Java并发编程---Disruptor体验

2024-06-12 14:08

本文主要是介绍Java并发编程---Disruptor体验,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近在学习中接触到Disruptor这个框架,虽然目前没有能实际运用到项目中,但是做个了解,在面试吹牛逼?的时候还能避免尴尬!学的不深,仅限于简单的使用和特性的认识。

什么是Disruptor


  • Martin Fowler在自己网站上写了一篇LMAX架构的文章,在文章中他介绍了LMAX是一种新型零售金融交易平台,它能够以很低的延迟产生大量交易。这个系统是建立在JVM平台上,其核心是一个业务逻辑处理器,它能够在一个线程里每秒处理6百万订单。业务逻辑处理器完全是运行在内存中,使`用事件源驱动方式。业务逻辑处理器的核心是Disruptor。

  • Disruptor它是一个开源的并发框架,并获得2011 Duke’s 程序框架创新奖,能够在无锁的情况下实现网络的Queue并发操作。Disruptor是一个高性能的异步处理框架,或者可以认为是最快的消息框架(轻量的JMS),也可以认为是一个观察者模式的实现,或者事件监听模式的实现。

从功能上来看,Disruptor 是实现了“队列”的功能,而且是一个有界队列。那么它的应用场景自然就是“生产者-消费者”模型的应用场合了。
可以拿 JDK 的 BlockingQueue 做一个简单对比,以便更好地认识 Disruptor 是什么。

我们知道 BlockingQueue 是一个 FIFO 队列,生产者(Producer)往队列里发布(publish)一项事件(或称之为“消息”也可以)时,消费者(Consumer)能获得通知;如果没有事件时,消费者被堵塞,直到生产者发布了新的事件。

BlockingQueue是基于锁实现的, 而锁的效率通常较低. 没有使用CAS机制实现。而Disruptor使用观察者模式, 主动将消息发送给消费者, 而不是等消费者从队列中取; 在无锁的情况下, 实现queue(环形, RingBuffer)的并发操作, 性能远高于BlockingQueue

Disruptor的设计方案

Disruptor通过以下设计来解决队列速度慢的问题:

  • 环形数组结构
    为了避免垃圾回收,采用数组而非链表。同时,数组对处理器的缓存机制更加友好。
  • 元素位置定位
    数组长度2^n,通过位运算,加快定位的速度。下标采取递增的形式。不用担心index溢出的问题。index是long类型,即使100万QPS的处理速度,也需要30万年才能用完。
  • 无锁设计
    每个生产者或者消费者线程,会先申请可以操作的元素在数组中的位置,申请到之后,直接在该位置写入或者读取数据。

Disruptor核心

在这里插入图片描述

  • Ring Buffer
    Disruptor底层数据结构实现,核心类,是线程间交换数据的中转地
  • Sequence Disruptor
    通过顺序递增的序号来编号管理通过其进行交换的数据(事件),对数据(事件)的处理过程总是沿着序号逐个递增处理。一个 Sequence 用于跟踪标识某个特定的事件处理者( RingBuffer/Consumer )的处理进度。虽然一个 AtomicLong 也可以用于标识进度,但定义 Sequence 来负责该问题还有另一个目的,那就是防止不同的 Sequence 之间的CPU缓存伪共享(Flase Sharing)问题。
    (注:这是 Disruptor 实现高性能的关键点之一,网上关于伪共享问题的介绍已经汗牛充栋,在此不再赘述)。
  • Sequencer
    Sequencer 是 Disruptor 的真正核心。此接口有两个实现类 SingleProducerSequencer、MultiProducerSequencer ,它们定义在生产者和消费者之间快速、正确地传递数据的并发算法。
  • Sequence Barrier
    用于保持对RingBuffer的 main published Sequence 和Consumer依赖的其它Consumer的 Sequence 的引用。 Sequence Barrier 还定义了决定 Consumer 是否还有可处理的事件的逻辑。
  • Wait Strategy
    定义 Consumer 如何进行等待下一个事件的策略。 (注:Disruptor 定义了多种不同的策略,针对不同的场景,提供了不一样的性能表现)
  • Event
    在 Disruptor 的语义中,生产者和消费者之间进行交换的数据被称为事件(Event)。它不是一个被 Disruptor 定义的特定类型,而是由 Disruptor 的使用者定义并指定。
  • EventProcessor
    EventProcessor 持有特定消费者(Consumer)的 Sequence,并提供用于调用事件处理实现的事件循环(Event Loop)。
  • EventHandler
    Disruptor 定义的事件处理接口,由用户实现,用于处理事件,是 Consumer 的真正实现。
  • Producer
    即生产者,只是泛指调用 Disruptor 发布事件的用户代码,Disruptor 没有定义特定接口或类型。

什么是RingBuffer

它是一个环(首尾相接的环),你可以把它用做在不同上下文(线程)间传递数据的buffer。

在这里插入图片描述

随着不停地填充这个buffer(可能也会有相应的读取),这个序号会一直增长,直到超过这个环。

在这里插入图片描述

Disruptor要求数组大小设置为2的N次方。这样可以通过Seq & (QueueSize - 1) 直接获取,其效率要比取模快得多。这是因为(Queue - 1)的二进制为全1等形式。例如,上图中QueueSize大小为8,Seq为10,则只需要计算二进制1010 & 0111 = 2,可直接得到index=2位置的元素。

在RingBuffer中,生产者向数组中写入数据,生产者写入数据时,使用CAS操作。消费者从中读取数据时,为防止多个消费者同时处理一个数据,也使用CAS操作进行数据保护。

Disruptor简单使用

  1. 引入maven依赖或导入jar包
	<dependencies><dependency><groupId>com.lmax</groupId><artifactId>disruptor</artifactId><version>3.2.1</version></dependency></dependencies>
  1. 定义事件
// 定义事件event  通过  Disruptor 进行交换的数据类型。
public class LongEvent {private long value;public long getValue() {return value;}public void setValue(long value) {this.value = value;}}
  1. 定义事件工厂
    事件工厂(Event Factory)定义了如何实例化前面第1步中定义的事件(Event),需要实现接口 com.lmax.disruptor.EventFactory。
    Disruptor 通过 EventFactory 在 RingBuffer 中预创建 Event 的实例。
    一个 Event 实例实际上被用作一个“数据槽”,发布者发布前,先从 RingBuffer 获得一个 Event 的实例,然后往 Event 实例中填充数据,之后再发布到 RingBuffer 中,之后由 Consumer 获得该 Event 实例并从中读取数据。
//EventFactory来实例化Event对象。
public class LongEventFactory implements EventFactory<LongEvent> {public LongEvent newInstance() {// TODO Auto-generated method stubreturn new LongEvent();}}
  1. 定义事件处理的具体实现
    通过实现接口 com.lmax.disruptor.EventHandler 定义事件处理的具体实现。
// 事件消费者 这个事件处理器简单地把事件中存储的数据打印到终端:
public class LongEventHandler  implements EventHandler<LongEvent>{public void onEvent(LongEvent arg0, long arg1, boolean arg2) throws Exception {System.out.println("消费者:"+arg0.getValue());}}

5.定义生产者发送数据

//定义生产这发送事件
public class LongEventProducer {public final RingBuffer<LongEvent> ringBuffer;public LongEventProducer(RingBuffer<LongEvent> ringBuffer) {this.ringBuffer = ringBuffer;}public void onData(ByteBuffer byteBuffer) {// 1.ringBuffer 事件队列 下一个槽long sequence = ringBuffer.next();Long data = null;try {// 2.取出空的事件队列LongEvent longEvent = ringBuffer.get(sequence);data = byteBuffer.getLong(0);// 3.获取事件队列传递的数据longEvent.setValue(data);try {Thread.sleep(10);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();}} finally {System.out.println("生产这准备发送数据");// 4.发布事件ringBuffer.publish(sequence);}}}

6.启动 Disruptor

public class DisruptorMain {public static void main(String[] args) {// 1.创建一个可缓存的线程 提供线程来给Consumer 的事件处理ExecutorService executor = Executors.newCachedThreadPool();// 2.创建工厂EventFactory<LongEvent> eventFactory = new LongEventFactory();// 3.创建ringBuffer 大小int ringBufferSize = 1024 * 1024; // ringBufferSize大小一定要是2的N次方// 4.创建Disruptor@SuppressWarnings("deprecation")Disruptor<LongEvent> disruptor = new Disruptor<LongEvent>(eventFactory, ringBufferSize, executor,ProducerType.SINGLE, new YieldingWaitStrategy());// 5.连接消费端方法disruptor.handleEventsWith(new LongEventHandler());// 多个消费者使用是重复取值并不是均摊// 6.启动disruptor.start();// 7.创建RingBuffer容器RingBuffer<LongEvent> ringBuffer = disruptor.getRingBuffer();// 8.创建生产者LongEventProducer producer = new LongEventProducer(ringBuffer);// 9.指定缓冲区大小ByteBuffer byteBuffer = ByteBuffer.allocate(8);for (int i = 1; i <= 100; i++) {byteBuffer.putLong(0, i);producer.onData(byteBuffer);}// 10.关闭disruptor和executordisruptor.shutdown();executor.shutdown();}}

特殊说明:

  • BlockingWaitStrategy 是最低效的策略,但其对CPU的消耗最小并且在各种不同部署环境中能提供更加一致的性能表现;
  • SleepingWaitStrategy 的性能表现跟 BlockingWaitStrategy 差不多,对 CPU 的消耗也类似,但其对生产者线程的影响最小,适合用于异步日志类似的场景;
  • YieldingWaitStrategy 的性能是最好的,适合用于低延迟的系统。在要求极高性能且事件处理线数小于 CPU 逻辑核心数的场景中,推荐使用此策略;例如,CPU开启超线程的特性。

总结


理解不深,有待完善!

附录:

Disruptor GitHub地址: https://github.com/LMAX-Exchange/disruptor

这篇关于Java并发编程---Disruptor体验的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1054436

相关文章

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

Java中ArrayList和LinkedList有什么区别举例详解

《Java中ArrayList和LinkedList有什么区别举例详解》:本文主要介绍Java中ArrayList和LinkedList区别的相关资料,包括数据结构特性、核心操作性能、内存与GC影... 目录一、底层数据结构二、核心操作性能对比三、内存与 GC 影响四、扩容机制五、线程安全与并发方案六、工程

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2