【深度学习】数竹签演示软件系统

2024-06-12 12:36

本文主要是介绍【深度学习】数竹签演示软件系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
往期文章列表:
【YOLO深度学习系列】图像分类、物体检测、实例分割、物体追踪、姿态估计、定向边框检测演示系统【含源码】
【深度学习】物体检测/实例分割/物体追踪/姿态估计/定向边框/图像分类检测演示系统【含源码】
【深度学习】YOLOV8数据标注及模型训练方法整体流程介绍及演示
【深度学习】行人跌倒行为检测软件系统
【深度学习】火灾检测软件系统
【深度学习】吸烟行为检测软件系统

软件功能演示

摘要:本文主要使用YOLOV8深度学习框架自训练了一个“数竹签检测模型”,基于此模型使用PYQT5实现了一款界面软件用于功能演示。让您可以更好的了解和学习,该软件支持图片、视频以及摄像头进行目标检测,使用目标检测的方式可以对竹签/筷子/钢管等目标进行监测和计数,应用场景还是比较丰富的。本系统所涉及的训练数据及软件源码已打包上传。
文中源码文件【获取方式】:关注公众号:利哥AI实例探险, 给公众号发送 “数竹签” 获取下载方式 给公众号发送 “数竹签数据集”
获取数据集下载方式,由于本人能力有限,难免有疏漏之处。

数竹签

图片检测演示

点击图片图标,选择需要检测的图片,即可得到检测结果。
在这里插入图片描述

视频检测演示

点击视频图标,选择需要检测的视频,即可得到检测结果。
在这里插入图片描述

摄像头功能

系统还提供了摄像头实时监测功能,可自行尝试

模型训练

整体可参考:【深度学习】YOLOV8数据标注及模型训练方法整体流程介绍及演示
以下是简单说明:
关于YOLOV8的数据标注及模型训练更详细的内容,可关注我的另一篇专门记录这部分的文章。

数据集准备及标注

目标检测的数据标注,可以用LabelImg,建议直接下载其可执行程序,而不是通过pip安装使用。
准备了 “数竹签数据集”,用作训练演示。把准备的数据集分为训练和验证两个数据集,一共包含 210 张图片,部分图片如下所示,这些数据集来源于网上:
在这里插入图片描述

模型训练

可参考:【深度学习】YOLOV8数据标注及模型训练方法整体流程介绍及演示

  1. 新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别,yolov8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证,data.yaml的具体内容如下,路径和names改成具体的即可:
    在这里插入图片描述

注:train与val后面表示需要训练图片的路径,建议直接填写绝对路径
2. 数据准备完成后,通过调用train.py文件进行训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小(根据内存大小调整即可,最小为1),代码如下所示:
[图片]

  1. 用到基础模型yolov8n.pt,所涉及的文件已打包上传,可关注【深度学习】YOLOV8数据标注及模型训练方法整体流程介绍及演示进行获取,运行 python train.py进行训练,如果想后台运行,可以使用 nohup python train.py & 命令,训练过程如下所示:
    [图片]

训练结果保存在 /runs/train 系列文件夹中,训练完的最终文件目录结构如下:
[图片]

训练结果评估

关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取,下载方式放在文章开头部分。
通常用损失函数下降的曲线来观察模型训练的情况,yolov8训练时主要包含三个方面的损失:定位损失、分类损失和动态特征损失,训练结束后,在runs/目录下找到训练过程及结果文件:
[图片]

  • 定位损失box_loss:预测框与标定框之间的误差GloU,越小定位越准确
  • 分类损失cls_loss:计算锚框与对应标定分类是否正确,越小分类越准确
  • 动态特征损失dfl_loss:一种用于回归预测框与目标框之间距离的损失函数,通过计算动态特征损失,可以更准确地调整预测框的位置,提高目标检测的准确性。
    本文训练结果如下:
    [图片]

PR曲线体现精确率和召回率的关系,mAP表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示iou为正负样本的阈值,mAP@0.5表示阈值大于0.5的平均mAP,可以看到本文模型目标检测的mAP@0.5。
[图片]

检测结果识别

模型训练完成后,可以得到一个最佳的训练结果模型best.pt文件,在runs/train/weights/bset.pt,可以使用该文件进行推理检测。
在这里插入图片描述
原文地址:【深度学习】数竹签演示软件系统

这篇关于【深度学习】数竹签演示软件系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1054233

相关文章

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

JavaScript Array.from及其相关用法详解(示例演示)

《JavaScriptArray.from及其相关用法详解(示例演示)》Array.from方法是ES6引入的一个静态方法,用于从类数组对象或可迭代对象创建一个新的数组实例,本文将详细介绍Array... 目录一、Array.from 方法概述1. 方法介绍2. 示例演示二、结合实际场景的使用1. 初始化二

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操