系统内存分配的首次适应算法和最佳适应算法链表模拟实现

2024-06-12 08:38

本文主要是介绍系统内存分配的首次适应算法和最佳适应算法链表模拟实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

#include<iostream>
#include<stdlib.h>
using namespace std;


#define Free 0 //空闲状态
#define Busy 1 //已用状态
#define OK 1    //完成
#define ERROR 0 //出错
#define MAX_length 640 //最大内存空间为640KB
typedef int Status;


typedef struct freearea//定义一个空闲区说明表结构
{
int ID;   //分区号
long size;   //分区大小
long address; //分区地址
int state;   //状态
}ElemType;


//----------  线性表的双向链表存储结构  ------------
typedef struct DuLNode //double linked list
{
ElemType data;
struct DuLNode *prior; //前趋指针
struct DuLNode *next;  //后继指针
}DuLNode, *DuLinkList;


DuLinkList block_first; //头结点
DuLinkList block_last;  //尾结点


Status alloc(int);//内存分配
Status free(int); //内存回收
Status First_fit(int, int);//首次适应算法
Status Best_fit(int, int); //最佳适应算法
void show();//查看分配
Status Initblock();//开创空间表


Status Initblock()//开创带头结点的内存空间链表
{
block_first = (DuLinkList)malloc(sizeof(DuLNode));
block_last = (DuLinkList)malloc(sizeof(DuLNode));
block_first->prior = NULL;
block_first->next = block_last;
block_first->data.state = 3;
block_first->data.size = 0;
block_last->prior = block_first;
block_last->next = NULL;
block_last->data.address = 0;
block_last->data.size = MAX_length;
block_last->data.ID = 0;
block_last->data.state = Free;
return OK;
}


//----------------------- 分 配 主 存 -------------------------
Status alloc(int ch)
{
int ID, request;
cout << "请输入作业(分区号(整数)):";
cin >> ID;
cout << "请输入需要分配的主存大小(单位:KB):";
cin >> request;
if (request<0 || request == 0)
{
cout << "分配大小不合适,请重试!" << endl;
return ERROR;
}


if (ch == 2) //选择最佳适应算法
{
if (Best_fit(ID, request) == OK) cout << "分配成功!" << endl;
else cout << "内存不足,分配失败!" << endl;
return OK;
}
else //默认首次适应算法
{
if (First_fit(ID, request) == OK) cout << "分配成功!" << endl;
else cout << "内存不足,分配失败!" << endl;
return OK;
}
}
//------------------ 首次适应算法 -----------------------
Status First_fit(int ID, int request)//传入作业名及申请量
{
DuLNode *p = block_first->next;
//请在此处添加为作业申请新空间且初始化的代码
//请在此处完成首次适应算法的代码,分两种情况:有大小恰好合适的空闲块和有空闲块能满足需求且有剩余。
//注意函数返回值。
DuLinkList block = (DuLinkList)malloc(sizeof(DuLNode));
memset(block, 0, sizeof(DuLNode));
block->data.ID = ID;
block->data.size = request;
block->data.state = Busy;
while (p)
{
if (p->data.state == Free && p->data.size >= request)
{
if ((p->data.size - request) > 1)
{

block->data.address = p->data.address;
p->data.address = p->data.address + request;
p->data.size = p->data.size - request;


p->prior->next = block;
block->next = p;
block->prior = p->prior;
p->prior = block;
return OK;
}
else
{
p->data.ID = ID;
p->data.state = Busy;
free(block);
return OK;
}
}
p = p->next;
}
free(block);
return ERROR;
}
//--------------------  最佳适应算法  ------------------------
Status Best_fit(int ID, int request)
{
//请在此处添加为作业申请新空间且初始化的代码
DuLinkList block = (DuLinkList)malloc(sizeof(DuLNode));
memset(block, 0, sizeof(DuLNode));
block->data.ID = ID;
block->data.size = request;
block->data.state = Busy;
DuLNode *p = block_first->next;
DuLNode *q = NULL; //记录最佳插入位置
int i = 0;
int num = 0;
DuLNode *q1 = NULL;

while (p)
{

if (p->data.state == Free && p->data.size >= request)
{
if (num == 0)
{
q = p;
i = q->data.size - request;


}
else if (p->data.size - request < i)
{
q = p;
i = q->data.size - request;
}
num++;

}


p = p->next;
}


//请在此处完成最佳适应算法的代码,重点:要查找到最小剩余空间的分区,即最佳插入位置


if (q == NULL) return ERROR;//没有找到空闲块
else
{
//请插入找到了最佳位置并实现内存分配的代码!
if ((q->data.size - request) > 1)
{


block->data.address = q->data.address;
q->data.address = q->data.address + request;
q->data.size = q->data.size - request;


block->next = q;
block->prior = q->prior;
q->prior->next = block;
q->prior = block;
return OK;
}
else
{
q->data.ID = ID;
q->data.state = Busy;
free(block);
return OK;
}
}
}


//-----------------------   主 存 回 收   --------------------
Status free(int ID)
{
DuLNode *p = block_first->next;
DuLNode *p1 = NULL;
while (p)
{
if (p->data.ID == ID)
{
p->data.state = Free;
p->data.ID = Free;
cout << "内存块找到,准备回收!" << endl;
if (p->next == NULL){
if ((p->prior->data.state == Free) && (p->prior->data.address + p->prior->data.size == p->data.address))
{
p->prior->data.size += p->data.size;
p->prior->next = NULL;
free(p);
}
cout << "内存块为最后一块!" << endl;
break;
}
//请在此处添加其他情况的回收的代码,主要包括要回收的分区与前面的空闲块相连或与后面的空闲块相连,或者与前后空闲块相连等。
   if ((p->next->next == NULL) && (p->next->data.state == Free) && (p->data.address + p->data.size == p->next->data.address))
{
p->data.size += p->next->data.size;
free(p->next);
p->next = NULL;
if ((p->prior->data.state == Free) && (p->prior->data.address + p->prior->data.size == p->data.address))
{
p->prior->data.size += p->data.size;
p->prior->next = NULL;
free(p);  


}
break;


}
else if ((p->prior->data.state == Free)&&(p->prior->data.address+p->prior->data.size == p->data.address))
{

if ( p->next->data.state == Free && (p->data.address + p->data.size == p->next->data.address))
{
p1 = p->next;
p->data.size += p->next->data.size;
p->next->next->prior = p;


p->next = p->next->next;
free(p1);

}
p->prior->data.size += p->data.size;
p->prior->next = p->next;
p->next->prior = p->prior;
free(p);
break;
}
else if ((p->next->data.state == Free) && (p->data.address + p->data.size == p->next->data.address))
{
p1 = p->next;
p->data.size += p->next->data.size;
p->next = p->next->next;
p->next->prior = p;
free(p1);
break;
}
break;
}
p = p->next;
}
cout << "回收成功!" << endl;
return OK;
}


//---------------  显示主存分配情况 ------------------
void show()
{
cout << "+++++++++++++++++++++++++++++++++++++++\n";
cout << "+++        主 存 分 配 情 况        +++\n";
cout << "+++++++++++++++++++++++++++++++++++++++\n";
DuLNode *p = block_first->next;
while (p)
{
cout << "分 区 号:";
if (p->data.ID == Free) cout << "Free" << endl;
else cout << p->data.ID << endl;
cout << "起始地址:" << p->data.address << endl;
cout << "分区大小:" << p->data.size << " KB" << endl;
cout << "状    态:";
if (p->data.state == Free) cout << "空  闲" << endl;
else cout << "已分配" << endl;
cout << "——————————————" << endl;
p = p->next;
}
}


//----------------------- 主  函  数---------------------------
void main()
{
int ch;//算法选择标记
cout << "       动态分区分配方式的模拟       \n";
cout << "************************************\n";
cout << "** 1)首次适应算法  2)最佳适应算法 **\n";
cout << "************************************\n";
cout << "请选择分配算法:";
cin >> ch;
Initblock(); //开创空间表
int choice;  //操作选择标记
while (1)
{
cout << "********************************************\n";
cout << "**    1: 分配内存        2: 回收内存      **\n";
cout << "**    3: 查看分配        0: 退    出      **\n";
cout << "********************************************\n";
cout << "请输入您的操作 :";
cin >> choice;
if (choice == 1) alloc(ch); // 分配内存
else if (choice == 2)  // 内存回收
{
int ID;
cout << "请输入您要释放的分区号:";
cin >> ID;
free(ID);
}
else if (choice == 3) show();//显示主存
else if (choice == 0) break; //退出
else //输入操作有误
{
cout << "输入有误,请重试!" << endl;
continue;
}
}
}

这篇关于系统内存分配的首次适应算法和最佳适应算法链表模拟实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1053720

相关文章

Linux系统中卸载与安装JDK的详细教程

《Linux系统中卸载与安装JDK的详细教程》本文详细介绍了如何在Linux系统中通过Xshell和Xftp工具连接与传输文件,然后进行JDK的安装与卸载,安装步骤包括连接Linux、传输JDK安装包... 目录1、卸载1.1 linux删除自带的JDK1.2 Linux上卸载自己安装的JDK2、安装2.1

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

基于SpringBoot实现文件秒传功能

《基于SpringBoot实现文件秒传功能》在开发Web应用时,文件上传是一个常见需求,然而,当用户需要上传大文件或相同文件多次时,会造成带宽浪费和服务器存储冗余,此时可以使用文件秒传技术通过识别重复... 目录前言文件秒传原理代码实现1. 创建项目基础结构2. 创建上传存储代码3. 创建Result类4.