本文主要是介绍c++项目中使用YOLOv4模型简单案例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
主要是使用yolo_v2_class.hpp文件
1、hpp文件
#ifndef DEMO_HPP
#define DEMO_HPP
#ifndef OPENCV
#define OPENCV
#endif
#include<yolo_v2_class.hpp>
#include<darknet.h>
using namespace cv;
using namespace std;
class yoloDetector
{
public:yoloDetector(string cfgfile,string weightfile,float thresh = 0.2, bool use_mean = false,int gpu_id = 0);vector<map<string,float>> detect(Mat imag);~yoloDetector();private:vector<map<string,float>> bbox_to_vector(vector<bbox_t> booxs);vector<bbox_t> detectionObjetc;float prob;float thresh;bool use_mean;Detector* dector;};
yoloDetector::yoloDetector(string cfgfile,string weightfile,float thresh, bool use_mean,int gpu_id ):prob(prob),thresh(thresh),use_mean(use_mean)
{dector = new Detector(cfgfile,weightfile,gpu_id);
}vector<map<string,float>> yoloDetector::detect(Mat imag){vector<bbox_t> boxs= dector->detect(imag,thresh);if(boxs.size()>0){return bbox_to_vector(boxs);}}vector<map<string,float>> yoloDetector::bbox_to_vector(vector<bbox_t> booxs){vector<map<string,float>> im;for (vector<bbox_t>::iterator iter = booxs.begin(); iter != booxs.end(); iter++){if((*iter).prob < prob)continue;map<string, float> ma;ma["x"]=(*iter).x;ma["y"]=(*iter).y;ma["w"]=(*iter).w;ma["h"]=(*iter).h;ma["prob"]=(*iter).prob;ma["obj_id"]=(*iter).obj_id;ma["frames_counter"]=(*iter).frames_counter;ma["x_3d"]=(*iter).x_3d;ma["y_3d"]=(*iter).y_3d;ma["z_3d"]=(*iter).z_3d;im.push_back(ma);}return im;}yoloDetector::~yoloDetector(){delete(dector);}#endif // DEMO_H
2、main文件
#include<demo.hpp>
#include<iostream>Mat huatu(Mat img,vector<map<string,float>> boox,string classname[]){for(vector<map<string,float>>::iterator iter=boox.begin();iter != boox.end(); iter++){float x = (*iter).at("x");float y = (*iter).at("y");float w = (*iter).at("w");float h = (*iter).at("h");float prob = (*iter).at("prob");float obj_id = (*iter).at("obj_id");if(prob>0.8){Rect rect(x, y,w, h);cv::rectangle(img,rect, cv::Scalar(255, 0, 0), 1,LINE_8,0);string pr = to_string(prob);string labe=classname[(int)obj_id] + ' ' + pr;cv::putText(img,labe ,cv::Point(x, y - 13),cv::FONT_HERSHEY_SIMPLEX,0.5,cv::Scalar(0, 255, 0),2);}}//cv::imshow("MyWindow", img);//waitKey(0);return img;}int main(int argc, char const *argv[]){if(argc<5){cout<<"input cfg/weight/(igm/video/cam)/path "<<endl;// ../yolov4Dect ../cfg/yolov4-head-test.cfg ../backup/yolov4-head_best.weights cam o}string classname[]={"head"};string cfgfile = argv[1];string weightfile = argv[2];string type=argv[3];string path=argv[4];yoloDetector yd(cfgfile,weightfile);vector<map<string,float>> boox;if(type=="img"){Mat img = cv::imread(path);Mat img2;if(img.data==nullptr){cout<<"path:"<<path<<"error"<<endl;return -1;}else{boox = yd.detect(img);if(boox.size()>0){img2 = huatu(img,boox,classname);}imshow("demo",img2);waitKey(0);}}else if(type=="video"){VideoCapture capture;capture.open(path);double rate = capture.get(CV_CAP_PROP_FPS);int deply = cvRound(1000.000/rate);if(!capture.isOpened()){cout<<"no opend"<<endl;return -1;}while(1){Mat fram;capture>>fram;//resize(fram,img,Size(640.0,480.0));//imshow("demo",fram);if(fram.data!=nullptr){boox = yd.detect(fram);}cout<<boox.size()<<endl;Mat img;if(boox.size()>0){//Mat img2=fram.clone();img=huatu(fram,boox,classname);imshow("demo",img);}waitKey(deply);}}else if(type=="cam"){VideoCapture capture(0);double rate = capture.get(CV_CAP_PROP_FPS);int deply = cvRound(1000.000/rate);if(!capture.isOpened()){cout<<"no opend"<<endl;return -1;}while(1){Mat fram;capture>>fram;//resize(fram,img,Size(640.0,480.0));//imshow("demo",fram);if(fram.data!=nullptr){boox = yd.detect(fram);}cout<<boox.size()<<endl;Mat img;if(boox.size()>0){//Mat img2=fram.clone();img=huatu(fram,boox,classname);imshow("demo",img);}waitKey(deply);}}return 0;}
3、CMakeLists
cmake_minimum_required(VERSION 2.8.3)
project(yolov4Dect)
set(CMAKE_CXX_STANDARD 11)find_package(OpenCV)set(SOURCE_FILES demo3.cpp demo.hpp)add_executable(yolov4Dect ${SOURCE_FILES})include_directories(${OpenCV_INCLUDE_DIRS} "./" "/usr/include" "/headless/docker_mapping/YOLOv4/darknet/include/")link_directories("/headless/docker_mapping/YOLOv4/darknet/" "/usr/local/cuda-10.1/lib64")target_link_libraries(yolov4Dect ${OpenCV_LIBS}"/headless/docker_mapping/YOLOv4/darknet/libdarknet.so")
简单案例写的比较粗糙,回头有时间在进一步完善
这篇关于c++项目中使用YOLOv4模型简单案例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!