Python政府短期或长期债务李嘉图等价模型状态矩阵

本文主要是介绍Python政府短期或长期债务李嘉图等价模型状态矩阵,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

🎯居民消费,财政用途:🖊贴现未来单期公用事业 | 🖊无风险单期贷款毛利率 | 🎯完全和不完全市场中居民消费:🖊计算完全市场、不完全市场中消费和债务发展趋势 | 🖊有限状态马尔可夫模拟费用收入 | 🎯完全和不完全市场税收:🖊有限状态马尔可夫模拟完全市场,政府单期支出和累积回报 | 🖊马尔可夫模拟:和平时期政府预算,战争时期政府预算 | 🖊马尔可夫跳跃于和平期和战争期,模拟政府预算 | 🎯马尔可夫跳跃过程:🖊计算单期收益 | 🖊李嘉图-巴罗效应模型(也称为李嘉图等价):计算政府税收和借贷 | 🎯最优财政政策规划:🖊拉姆齐定价规划税率、税收收入、政府债务的动态 | 🎯全球化两国创新周期轨迹模拟。

🎯资产价格:Python和MATLAB及C++资产价格看涨看跌对冲模型和微积分

🎯风险获利:Python流动性做市风险获利 | 信息不对称买卖数学模型

🎯市场流动性:Python | C++ | MATLAB | Julia | R 市场流动性数学预先评估量

🎯市场机制:Python牛市熊市横盘机制 | 缺口分析 | 头寸调整算法

🎯金融数学:C++和Python计算金融数学方程算法模型

🍇Python宏观经济学矩估计

矩估计就是模拟模型数据 S S S次,并使用模拟数据中矩的平均值作为模型矩的估计量。令 x ~ = { x ~ 1 , x ~ 2 , … x ~ s , … x ~ S } \tilde{x}=\left\{\tilde{x}_1, \tilde{x}_2, \ldots \tilde{x}_s, \ldots \tilde{x}_S\right\} x~={x~1,x~2,x~s,x~S} 为模型数据的 S S S​ 模拟。
m ^ ( x ~ ∣ θ ) = 1 S ∑ s = 1 S m ( x ~ s ∣ θ ) \hat{m}(\tilde{x} \mid \theta)=\frac{1}{S} \sum_{s=1}^S m\left(\tilde{x}_s \mid \theta\right) m^(x~θ)=S1s=1Sm(x~sθ)
一旦我们从 S S S 模拟中估计出模型矩 m ^ ( x ~ ∣ θ ) \hat{m}(\tilde{x} \mid \theta) m^(x~θ),矩估计就与我们对广义矩法的介绍非常相似。估计参数向量 θ ^ S M M \hat{\theta}_{S M M} θ^SMM 的矩估计法是选择 θ \theta θ 来最小化数据矩 m ( x ) m(x) m(x) 与模拟模型矩的距离度量 m ^ ( x ~ ∣ θ ) \hat{m}(\tilde{x} \mid \theta) m^(x~θ)
θ ^ S M M = θ : min ⁡ θ ∣ ∣ m ^ ( x ~ ∣ θ ) − m ( x ) ∣ ∣ \hat{\theta}_{S M M}=\theta: \quad \min _\theta|| \hat{m}(\tilde{x} \mid \theta)-m(x)|| θ^SMM=θ:θmin∣∣m^(x~θ)m(x)∣∣
在此,矩估计量如下:
θ ^ S M M = θ : min ⁡ θ e ( x ~ , x ∣ θ ) T W e ( x ~ , x ∣ θ ) \hat{\theta}_{S M M}=\theta: \quad \min _\theta e(\tilde{x}, x \mid \theta)^T W e(\tilde{x}, x \mid \theta) θ^SMM=θ:θmine(x~,xθ)TWe(x~,xθ)
其中 W W W 是准则函数中的 R × R R \times R R×R 权重矩阵。现在,将此加权矩阵视为单位矩阵。我们将二次形式表达式 e ( x ~ , x ∣ θ ) T W e ( x ~ , x ∣ θ ) e(\tilde{x}, x \mid \theta)^T W e(\tilde{x}, x \mid \theta) e(x~,xθ)TWe(x~,xθ) 称为准则函数,因为它是严格正标量,即矩估计问题陈述中最小化的对象。准则函数中的 R × R R \times R R×R 加权矩阵 W W W 允许计量经济学家控制最小化问题中每个时刻的加权方式。例如, W W W R × R R \times R R×R 单位矩阵将为每个时刻赋予相等的权重,而标准函数将是偏差百分比(误差)的简单平方和。其他加权策略可以由问题或模型的性质决定。

矩估计需要强调的最后一项是,为模型的 S S S 模拟绘制的误差必须仅绘制一次,以便最小化问题 θ ^ S M M \hat{ \theta}_{S M M} θ^SMM 不会因 θ \theta θ 值的每次猜测而改变底层采样。更简单地说,您希望所有模拟的随机抽取保持不变,以便最小化问题中唯一改变的是参数向量 θ \theta θ 的值。

💦正态分布拟合到中等宏观经济学测试分数

数据位于文本文件 tpts.txt 中。回想一下,这些测试分数在 0 到 450 之间。下图显示了数据的直方图,以及三个截断的正常概率密度函数。黑线是截断的正态概率密度函数的 μ \mu μ σ \sigma σ 的机器学习估计。红线和绿线只是截断法线参数 μ \mu μ σ \sigma σ 的两个“任意”选择的组合的概率密度函数。

import requests
from IPython.display import Imageurl = ('https://raw.githubusercontent.com/Notebooks/' +'master/DMM/images/Mplots.png')
image_file = requests.get(url, allow_redirects=True)
open('Mplots.png', 'wb').write(image_file.content)
Image("Mplots.png")

让我们尝试根据矩估计的截断正态分布来估计参数 μ \mu μ σ \sigma σ​。我们应该利用哪些时刻?让我们尝试一下数据的均值和方差。这两个数据统计定义为:
mean  ( scores ⁡ i ) = 1 N ∑ i = 1 N scores ⁡ i var ⁡ ( scores ⁡ i ) = 1 N − 1 ∑ i = 1 N ( scores ⁡ i − mean ⁡ ( scores ⁡ i ) ) 2 \begin{gathered} \text { mean }\left(\operatorname{scores}_i\right)=\frac{1}{N} \sum_{i=1}^N \operatorname{scores}_i \\ \operatorname{var}\left(\operatorname{scores}_i\right)=\frac{1}{N-1} \sum_{i=1}^N\left(\operatorname{scores}_i-\operatorname{mean}\left(\operatorname{scores}_i\right)\right)^2 \end{gathered}  mean (scoresi)=N1i=1Nscoresivar(scoresi)=N11i=1N(scoresimean(scoresi))2
因此,矩估计的数据矩向量 m ( x ) m(x) m(x) 如下
m ( scores ⁡ i ) ≡ [ mean ⁡ ( scores ⁡ i ) var ⁡ ( scores ⁡ i ) ] m\left(\operatorname{scores}_i\right) \equiv\left[\begin{array}{c} \operatorname{mean}\left(\operatorname{scores}_i\right) \\ \operatorname{var}\left(\operatorname{scores}_i\right) \end{array}\right] m(scoresi)[mean(scoresi)var(scoresi)]
测试分数的一次模拟(某次模拟)会是什么样子?数据文件 tpts.txt 中有 161 个测试分数观测值。因此,一次模拟(某次模拟)将是从参数 μ 、 σ \mu、\sigma μσ 和截断值 = 450 =450 =450 的截断正态分布中抽取 161 个测试分数。

import numpy as np
import numpy.random as rnd
import numpy.linalg as lin
import scipy.stats as sts
import scipy.integrate as intgr
import scipy.optimize as opt
import matplotlib
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
cmap1 = matplotlib.cm.get_cmap('summer')%matplotlib notebook
url = ('https://raw.githubusercontent.com/Notebooks/' +'master/DMM/data/tpts.txt')
data_file = requests.get(url, allow_redirects=True)
open('tpts.txt', 'wb').write(data_file.content)pts = np.loadtxt('tpts.txt')

令随机变量 y ∼ N ( μ , σ ) y \sim N(\mu, \sigma) yN(μ,σ) 服从均值 μ \mu μ 和标准差 σ \sigma σ 的正态分布,PDF 为 ϕ ( y ∣ μ , σ ) \phi(y \mid \mu, \sigma) ϕ(yμ,σ)和 CDF 由 Φ ( y ∣ μ , σ ) \Phi(y \mid \mu, \sigma) Φ(yμ,σ) 给出。随机变量 x ∈ ( a , b ) x \in(a, b) x(a,b) 的截断正态分布基于 y y y,但截止值为 a ≥ − ∞ a \geq-\infty a 作为下限, a < b ≤ ∞ a<b \leq \infty a<b 为上限具有以下概率密度函数。
f ( x ∣ μ , σ , a , b ) = { 0 if  x ≤ a ϕ ( x ∣ μ , σ ) Φ ( b ∣ μ , σ ) − Φ ( a ∣ μ , σ ) 0 if  x ≥ b if  a < x < b f(x \mid \mu, \sigma, a, b)=\left\{\begin{array}{l} 0 \text { if } \quad x \leq a \\ \frac{\phi(x \mid \mu, \sigma)}{\Phi(b \mid \mu, \sigma)-\Phi(a \mid \mu, \sigma)} \\ 0 \quad \text { if } \quad x \geq b \end{array} \quad \text { if } a<x<b\right. f(xμ,σ,a,b)= 0 if xaΦ(bμ,σ)Φ(aμ,σ)ϕ(xμ,σ)0 if xb if a<x<b
截断法线的累计密度函数可以表示为:
F ( x ∣ μ , σ , a , b ) = { 0 if  x ≤ a Φ ( x ∣ μ , σ ) − Φ ( a ∣ μ , σ ) Φ ( b ∣ μ , σ ) − Φ ( a ∣ μ , σ ) 0 if  x ≥ b if  a < x < b F(x \mid \mu, \sigma, a, b)=\left\{\begin{array}{l} 0 \quad \text { if } \quad x \leq a \\ \frac{\Phi(x \mid \mu, \sigma)-\Phi(a \mid \mu, \sigma)}{\Phi(b \mid \mu, \sigma)-\Phi(a \mid \mu, \sigma)} \\ 0 \quad \text { if } \quad x \geq b \end{array} \quad \text { if } a<x<b\right. F(xμ,σ,a,b)= 0 if xaΦ(bμ,σ)Φ(aμ,σ)Φ(xμ,σ)Φ(aμ,σ)0 if xb if a<x<b
请注意, z z z 只是 p p p 的变换,使得 z ∼ U ( Φ − 1 ( a ∣ μ , σ ) , Φ − 1 ( b ∣ μ , σ ) ) z \sim U\left(\Phi^{-1}(a \mid \mu, \sigma), \Phi^{-1}(b \mid \mu, \sigma)\right) zU(Φ1(aμ,σ),Φ1(bμ,σ))​。

定义函数,根据截断正态分布给出概率密度函数值

def trunc_norm_pdf(xvals, mu, sigma, cut_lb, cut_ub):if (cut_lb == None) & (cut_ub == None):cut_ub_cdf = 1.0cut_lb_cdf = 0.0elif (cut_lb != None) & (cut_ub == None):cut_ub_cdf = 1.0cut_lb_cdf = sts.norm.cdf(cut_lb, loc=mu, scale=sigma)elif (cut_lb == None) & (cut_ub != None):cut_ub_cdf = sts.norm.cdf(cut_ub, loc=mu, scale=sigma)cut_lb_cdf = 0.0elif (cut_lb != None) & (cut_ub != None):cut_ub_cdf = sts.norm.cdf(cut_ub, loc=mu, scale=sigma)cut_lb_cdf = sts.norm.cdf(cut_lb, loc=mu, scale=sigma)pdf_vals = (sts.norm.pdf(xvals, loc=mu, scale=sigma) /(cut_ub_cdf - cut_lb_cdf))return pdf_vals

定义从截断的结果中提取 N x S 测试分数值的函数

def trunc_norm_draws(unif_vals, mu, sigma, cut_lb, cut_ub):if (cut_lb == None) & (cut_ub == None):cut_ub_cdf = 1.0cut_lb_cdf = 0.0elif (cut_lb != None) & (cut_ub == None):cut_ub_cdf = 1.0cut_lb_cdf = sts.norm.cdf(cut_lb, loc=mu, scale=sigma)elif (cut_lb == None) & (cut_ub != None):cut_ub_cdf = sts.norm.cdf(cut_ub, loc=mu, scale=sigma)cut_lb_cdf = 0.0elif (cut_lb != None) & (cut_ub != None):cut_ub_cdf = sts.norm.cdf(cut_ub, loc=mu, scale=sigma)cut_lb_cdf = sts.norm.cdf(cut_lb, loc=mu, scale=sigma)unif2_vals = unif_vals * (cut_ub_cdf - cut_lb_cdf) + cut_lb_cdftnorm_draws = sts.norm.ppf(unif2_vals, loc=mu, scale=sigma)return tnorm_draws

从平均值 μ = 300 , σ = 30 \mu=300, \sigma=30 μ=300,σ=30 的截断正态分布中模拟 161 个测试分数会是什么样子?

mu_1 = 300.0
sig_1 = 30.0
cut_lb_1 = 0.0
cut_ub_1 = 450.0
unif_vals_1 = sts.uniform.rvs(0, 1, size=161)
draws_1 = trunc_norm_draws(unif_vals_1, mu_1, sig_1,cut_lb_1, cut_ub_1)
print('Mean score =', draws_1.mean())
print('Variance of scores =', draws_1.var())
print('Standard deviation of scores =', draws_1.std())count_d, bins_d, ignored_d = \plt.hist(pts, 30, density=True, color='b', edgecolor='black',linewidth=0.8, label='Data')
count_m, bins_m, ignored_m = \plt.hist(draws_1, 30, density=True, color='r', edgecolor='black',linewidth=0.8, label='Simulated data')
xvals = np.linspace(0, 450, 500)
plt.plot(xvals, trunc_norm_pdf(xvals, mu_1, sig_1, cut_lb_1, cut_ub_1),linewidth=2, color='k', label='PDF')
plt.title('Econ 381 scores: 2011-2012', fontsize=20)
plt.xlabel('Total points')
plt.ylabel('Percent of scores')
plt.xlim([0, 550])  
plt.legend(loc='upper left')

通过该模拟,我们可以根据模拟数据计算矩,就像根据实际数据计算矩一样。

👉参阅一:计算思维

👉参阅二:亚图跨际

这篇关于Python政府短期或长期债务李嘉图等价模型状态矩阵的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1053472

相关文章

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

Python下载Pandas包的步骤

《Python下载Pandas包的步骤》:本文主要介绍Python下载Pandas包的步骤,在python中安装pandas库,我采取的方法是用PIP的方法在Python目标位置进行安装,本文给大... 目录安装步骤1、首先找到我们安装python的目录2、使用命令行到Python安装目录下3、我们回到Py