Python政府短期或长期债务李嘉图等价模型状态矩阵

本文主要是介绍Python政府短期或长期债务李嘉图等价模型状态矩阵,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

🎯居民消费,财政用途:🖊贴现未来单期公用事业 | 🖊无风险单期贷款毛利率 | 🎯完全和不完全市场中居民消费:🖊计算完全市场、不完全市场中消费和债务发展趋势 | 🖊有限状态马尔可夫模拟费用收入 | 🎯完全和不完全市场税收:🖊有限状态马尔可夫模拟完全市场,政府单期支出和累积回报 | 🖊马尔可夫模拟:和平时期政府预算,战争时期政府预算 | 🖊马尔可夫跳跃于和平期和战争期,模拟政府预算 | 🎯马尔可夫跳跃过程:🖊计算单期收益 | 🖊李嘉图-巴罗效应模型(也称为李嘉图等价):计算政府税收和借贷 | 🎯最优财政政策规划:🖊拉姆齐定价规划税率、税收收入、政府债务的动态 | 🎯全球化两国创新周期轨迹模拟。

🎯资产价格:Python和MATLAB及C++资产价格看涨看跌对冲模型和微积分

🎯风险获利:Python流动性做市风险获利 | 信息不对称买卖数学模型

🎯市场流动性:Python | C++ | MATLAB | Julia | R 市场流动性数学预先评估量

🎯市场机制:Python牛市熊市横盘机制 | 缺口分析 | 头寸调整算法

🎯金融数学:C++和Python计算金融数学方程算法模型

🍇Python宏观经济学矩估计

矩估计就是模拟模型数据 S S S次,并使用模拟数据中矩的平均值作为模型矩的估计量。令 x ~ = { x ~ 1 , x ~ 2 , … x ~ s , … x ~ S } \tilde{x}=\left\{\tilde{x}_1, \tilde{x}_2, \ldots \tilde{x}_s, \ldots \tilde{x}_S\right\} x~={x~1,x~2,x~s,x~S} 为模型数据的 S S S​ 模拟。
m ^ ( x ~ ∣ θ ) = 1 S ∑ s = 1 S m ( x ~ s ∣ θ ) \hat{m}(\tilde{x} \mid \theta)=\frac{1}{S} \sum_{s=1}^S m\left(\tilde{x}_s \mid \theta\right) m^(x~θ)=S1s=1Sm(x~sθ)
一旦我们从 S S S 模拟中估计出模型矩 m ^ ( x ~ ∣ θ ) \hat{m}(\tilde{x} \mid \theta) m^(x~θ),矩估计就与我们对广义矩法的介绍非常相似。估计参数向量 θ ^ S M M \hat{\theta}_{S M M} θ^SMM 的矩估计法是选择 θ \theta θ 来最小化数据矩 m ( x ) m(x) m(x) 与模拟模型矩的距离度量 m ^ ( x ~ ∣ θ ) \hat{m}(\tilde{x} \mid \theta) m^(x~θ)
θ ^ S M M = θ : min ⁡ θ ∣ ∣ m ^ ( x ~ ∣ θ ) − m ( x ) ∣ ∣ \hat{\theta}_{S M M}=\theta: \quad \min _\theta|| \hat{m}(\tilde{x} \mid \theta)-m(x)|| θ^SMM=θ:θmin∣∣m^(x~θ)m(x)∣∣
在此,矩估计量如下:
θ ^ S M M = θ : min ⁡ θ e ( x ~ , x ∣ θ ) T W e ( x ~ , x ∣ θ ) \hat{\theta}_{S M M}=\theta: \quad \min _\theta e(\tilde{x}, x \mid \theta)^T W e(\tilde{x}, x \mid \theta) θ^SMM=θ:θmine(x~,xθ)TWe(x~,xθ)
其中 W W W 是准则函数中的 R × R R \times R R×R 权重矩阵。现在,将此加权矩阵视为单位矩阵。我们将二次形式表达式 e ( x ~ , x ∣ θ ) T W e ( x ~ , x ∣ θ ) e(\tilde{x}, x \mid \theta)^T W e(\tilde{x}, x \mid \theta) e(x~,xθ)TWe(x~,xθ) 称为准则函数,因为它是严格正标量,即矩估计问题陈述中最小化的对象。准则函数中的 R × R R \times R R×R 加权矩阵 W W W 允许计量经济学家控制最小化问题中每个时刻的加权方式。例如, W W W R × R R \times R R×R 单位矩阵将为每个时刻赋予相等的权重,而标准函数将是偏差百分比(误差)的简单平方和。其他加权策略可以由问题或模型的性质决定。

矩估计需要强调的最后一项是,为模型的 S S S 模拟绘制的误差必须仅绘制一次,以便最小化问题 θ ^ S M M \hat{ \theta}_{S M M} θ^SMM 不会因 θ \theta θ 值的每次猜测而改变底层采样。更简单地说,您希望所有模拟的随机抽取保持不变,以便最小化问题中唯一改变的是参数向量 θ \theta θ 的值。

💦正态分布拟合到中等宏观经济学测试分数

数据位于文本文件 tpts.txt 中。回想一下,这些测试分数在 0 到 450 之间。下图显示了数据的直方图,以及三个截断的正常概率密度函数。黑线是截断的正态概率密度函数的 μ \mu μ σ \sigma σ 的机器学习估计。红线和绿线只是截断法线参数 μ \mu μ σ \sigma σ 的两个“任意”选择的组合的概率密度函数。

import requests
from IPython.display import Imageurl = ('https://raw.githubusercontent.com/Notebooks/' +'master/DMM/images/Mplots.png')
image_file = requests.get(url, allow_redirects=True)
open('Mplots.png', 'wb').write(image_file.content)
Image("Mplots.png")

让我们尝试根据矩估计的截断正态分布来估计参数 μ \mu μ σ \sigma σ​。我们应该利用哪些时刻?让我们尝试一下数据的均值和方差。这两个数据统计定义为:
mean  ( scores ⁡ i ) = 1 N ∑ i = 1 N scores ⁡ i var ⁡ ( scores ⁡ i ) = 1 N − 1 ∑ i = 1 N ( scores ⁡ i − mean ⁡ ( scores ⁡ i ) ) 2 \begin{gathered} \text { mean }\left(\operatorname{scores}_i\right)=\frac{1}{N} \sum_{i=1}^N \operatorname{scores}_i \\ \operatorname{var}\left(\operatorname{scores}_i\right)=\frac{1}{N-1} \sum_{i=1}^N\left(\operatorname{scores}_i-\operatorname{mean}\left(\operatorname{scores}_i\right)\right)^2 \end{gathered}  mean (scoresi)=N1i=1Nscoresivar(scoresi)=N11i=1N(scoresimean(scoresi))2
因此,矩估计的数据矩向量 m ( x ) m(x) m(x) 如下
m ( scores ⁡ i ) ≡ [ mean ⁡ ( scores ⁡ i ) var ⁡ ( scores ⁡ i ) ] m\left(\operatorname{scores}_i\right) \equiv\left[\begin{array}{c} \operatorname{mean}\left(\operatorname{scores}_i\right) \\ \operatorname{var}\left(\operatorname{scores}_i\right) \end{array}\right] m(scoresi)[mean(scoresi)var(scoresi)]
测试分数的一次模拟(某次模拟)会是什么样子?数据文件 tpts.txt 中有 161 个测试分数观测值。因此,一次模拟(某次模拟)将是从参数 μ 、 σ \mu、\sigma μσ 和截断值 = 450 =450 =450 的截断正态分布中抽取 161 个测试分数。

import numpy as np
import numpy.random as rnd
import numpy.linalg as lin
import scipy.stats as sts
import scipy.integrate as intgr
import scipy.optimize as opt
import matplotlib
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
cmap1 = matplotlib.cm.get_cmap('summer')%matplotlib notebook
url = ('https://raw.githubusercontent.com/Notebooks/' +'master/DMM/data/tpts.txt')
data_file = requests.get(url, allow_redirects=True)
open('tpts.txt', 'wb').write(data_file.content)pts = np.loadtxt('tpts.txt')

令随机变量 y ∼ N ( μ , σ ) y \sim N(\mu, \sigma) yN(μ,σ) 服从均值 μ \mu μ 和标准差 σ \sigma σ 的正态分布,PDF 为 ϕ ( y ∣ μ , σ ) \phi(y \mid \mu, \sigma) ϕ(yμ,σ)和 CDF 由 Φ ( y ∣ μ , σ ) \Phi(y \mid \mu, \sigma) Φ(yμ,σ) 给出。随机变量 x ∈ ( a , b ) x \in(a, b) x(a,b) 的截断正态分布基于 y y y,但截止值为 a ≥ − ∞ a \geq-\infty a 作为下限, a < b ≤ ∞ a<b \leq \infty a<b 为上限具有以下概率密度函数。
f ( x ∣ μ , σ , a , b ) = { 0 if  x ≤ a ϕ ( x ∣ μ , σ ) Φ ( b ∣ μ , σ ) − Φ ( a ∣ μ , σ ) 0 if  x ≥ b if  a < x < b f(x \mid \mu, \sigma, a, b)=\left\{\begin{array}{l} 0 \text { if } \quad x \leq a \\ \frac{\phi(x \mid \mu, \sigma)}{\Phi(b \mid \mu, \sigma)-\Phi(a \mid \mu, \sigma)} \\ 0 \quad \text { if } \quad x \geq b \end{array} \quad \text { if } a<x<b\right. f(xμ,σ,a,b)= 0 if xaΦ(bμ,σ)Φ(aμ,σ)ϕ(xμ,σ)0 if xb if a<x<b
截断法线的累计密度函数可以表示为:
F ( x ∣ μ , σ , a , b ) = { 0 if  x ≤ a Φ ( x ∣ μ , σ ) − Φ ( a ∣ μ , σ ) Φ ( b ∣ μ , σ ) − Φ ( a ∣ μ , σ ) 0 if  x ≥ b if  a < x < b F(x \mid \mu, \sigma, a, b)=\left\{\begin{array}{l} 0 \quad \text { if } \quad x \leq a \\ \frac{\Phi(x \mid \mu, \sigma)-\Phi(a \mid \mu, \sigma)}{\Phi(b \mid \mu, \sigma)-\Phi(a \mid \mu, \sigma)} \\ 0 \quad \text { if } \quad x \geq b \end{array} \quad \text { if } a<x<b\right. F(xμ,σ,a,b)= 0 if xaΦ(bμ,σ)Φ(aμ,σ)Φ(xμ,σ)Φ(aμ,σ)0 if xb if a<x<b
请注意, z z z 只是 p p p 的变换,使得 z ∼ U ( Φ − 1 ( a ∣ μ , σ ) , Φ − 1 ( b ∣ μ , σ ) ) z \sim U\left(\Phi^{-1}(a \mid \mu, \sigma), \Phi^{-1}(b \mid \mu, \sigma)\right) zU(Φ1(aμ,σ),Φ1(bμ,σ))​。

定义函数,根据截断正态分布给出概率密度函数值

def trunc_norm_pdf(xvals, mu, sigma, cut_lb, cut_ub):if (cut_lb == None) & (cut_ub == None):cut_ub_cdf = 1.0cut_lb_cdf = 0.0elif (cut_lb != None) & (cut_ub == None):cut_ub_cdf = 1.0cut_lb_cdf = sts.norm.cdf(cut_lb, loc=mu, scale=sigma)elif (cut_lb == None) & (cut_ub != None):cut_ub_cdf = sts.norm.cdf(cut_ub, loc=mu, scale=sigma)cut_lb_cdf = 0.0elif (cut_lb != None) & (cut_ub != None):cut_ub_cdf = sts.norm.cdf(cut_ub, loc=mu, scale=sigma)cut_lb_cdf = sts.norm.cdf(cut_lb, loc=mu, scale=sigma)pdf_vals = (sts.norm.pdf(xvals, loc=mu, scale=sigma) /(cut_ub_cdf - cut_lb_cdf))return pdf_vals

定义从截断的结果中提取 N x S 测试分数值的函数

def trunc_norm_draws(unif_vals, mu, sigma, cut_lb, cut_ub):if (cut_lb == None) & (cut_ub == None):cut_ub_cdf = 1.0cut_lb_cdf = 0.0elif (cut_lb != None) & (cut_ub == None):cut_ub_cdf = 1.0cut_lb_cdf = sts.norm.cdf(cut_lb, loc=mu, scale=sigma)elif (cut_lb == None) & (cut_ub != None):cut_ub_cdf = sts.norm.cdf(cut_ub, loc=mu, scale=sigma)cut_lb_cdf = 0.0elif (cut_lb != None) & (cut_ub != None):cut_ub_cdf = sts.norm.cdf(cut_ub, loc=mu, scale=sigma)cut_lb_cdf = sts.norm.cdf(cut_lb, loc=mu, scale=sigma)unif2_vals = unif_vals * (cut_ub_cdf - cut_lb_cdf) + cut_lb_cdftnorm_draws = sts.norm.ppf(unif2_vals, loc=mu, scale=sigma)return tnorm_draws

从平均值 μ = 300 , σ = 30 \mu=300, \sigma=30 μ=300,σ=30 的截断正态分布中模拟 161 个测试分数会是什么样子?

mu_1 = 300.0
sig_1 = 30.0
cut_lb_1 = 0.0
cut_ub_1 = 450.0
unif_vals_1 = sts.uniform.rvs(0, 1, size=161)
draws_1 = trunc_norm_draws(unif_vals_1, mu_1, sig_1,cut_lb_1, cut_ub_1)
print('Mean score =', draws_1.mean())
print('Variance of scores =', draws_1.var())
print('Standard deviation of scores =', draws_1.std())count_d, bins_d, ignored_d = \plt.hist(pts, 30, density=True, color='b', edgecolor='black',linewidth=0.8, label='Data')
count_m, bins_m, ignored_m = \plt.hist(draws_1, 30, density=True, color='r', edgecolor='black',linewidth=0.8, label='Simulated data')
xvals = np.linspace(0, 450, 500)
plt.plot(xvals, trunc_norm_pdf(xvals, mu_1, sig_1, cut_lb_1, cut_ub_1),linewidth=2, color='k', label='PDF')
plt.title('Econ 381 scores: 2011-2012', fontsize=20)
plt.xlabel('Total points')
plt.ylabel('Percent of scores')
plt.xlim([0, 550])  
plt.legend(loc='upper left')

通过该模拟,我们可以根据模拟数据计算矩,就像根据实际数据计算矩一样。

👉参阅一:计算思维

👉参阅二:亚图跨际

这篇关于Python政府短期或长期债务李嘉图等价模型状态矩阵的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1053472

相关文章

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专