论文阅读U-KAN Makes Strong Backbone for MedicalImage Segmentation and Generation

本文主要是介绍论文阅读U-KAN Makes Strong Backbone for MedicalImage Segmentation and Generation,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作为一种非常有潜力的代替MLP的模型,KAN最终获得了学术界极大的关注。在我昨天的博客里,解读了最近的热门模型KAN:

论文阅读KAN: Kolmogorov–Arnold Networks-CSDN博客

KAN的原文作者提到了很多不足。本文算是对其中两个现有不足的回应,也就是:1)KAN不仅只能用于特定结构和深度,2)KAN不仅能用于小规模AI+Science任务,还可以用于更大规模或更复杂的任务。

本文将KAN融入了U-Net网络结构中,并运用在医学图像分割任务上。

1,U-KAN架构

整体结构如图,是个U-Net经典的对称编解码器结构。编解码器都有卷积部分和token化KAN模块部分组成。卷积部分如U-Net一样,不赘述。

Token化的KAN模块:

1)token化:首先对特征进行重塑,得到一系列扁平化的二维patch。接着进行线性投影,线性投影是通过一个核大小为3的卷积层实现的。卷积层足以编码位置信息,并且其性能实际上优于标准的位置编码技术。

2)KAN块:在获取到token之后,我们将它们传入一系列的KAN层(N=3)。在每个KAN层之后,特征会通过一个高效的深度卷积层(DwConv)、一个批量归一化层(BN)和一个ReLU激活函数。此外,还是用了残差连接。

2,消融实验

1)KAN层层数影响

2)KAN层换成MLP的话,结果会下降(在我看来本文最重要的结论也就是这个)

3)模型规模的影响

3,与SOTA对比

4,本文的缺陷与不足

本文在我看来有两个主要不足:

1)训练难度:KAN至关重要的训练难度问题没有提及。将KAN结构嵌入U-Net是否会导致训练变得不稳定或难以收敛呢?训练速度会慢多少呢?

2)实验对比不充分,结果可能不SOTA

本文的对比实验,完全没有对比基于Transformer的图像分割模型,对比的几个模型要么是纯卷积模型,要么是卷积+MLP模型。那么我们是否可以认为U-KAN的结果逊于主流的Transformer分割模型?

5总结

在我看来,虽然本文模型大概率并不SOTA,但是也不是非要SOTA的模型和实验才有价值。

本文的价值在于验证了KAN可以用于更广泛的数据集,并且在更多场景下展现了超越和取代MLP的潜力。

这篇关于论文阅读U-KAN Makes Strong Backbone for MedicalImage Segmentation and Generation的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1053361

相关文章

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已

OmniGlue论文详解(特征匹配)

OmniGlue论文详解(特征匹配) 摘要1. 引言2. 相关工作2.1. 广义局部特征匹配2.2. 稀疏可学习匹配2.3. 半稠密可学习匹配2.4. 与其他图像表示匹配 3. OmniGlue3.1. 模型概述3.2. OmniGlue 细节3.2.1. 特征提取3.2.2. 利用DINOv2构建图形。3.2.3. 信息传播与新的指导3.2.4. 匹配层和损失函数3.2.5. 与Super

软件架构模式:5 分钟阅读

原文: https://orkhanscience.medium.com/software-architecture-patterns-5-mins-read-e9e3c8eb47d2 软件架构模式:5 分钟阅读 当有人潜入软件工程世界时,有一天他需要学习软件架构模式的基础知识。当我刚接触编码时,我不知道从哪里获得简要介绍现有架构模式的资源,这样它就不会太详细和混乱,而是非常抽象和易

BERT 论文逐段精读【论文精读】

BERT: 近 3 年 NLP 最火 CV: 大数据集上的训练好的 NN 模型,提升 CV 任务的性能 —— ImageNet 的 CNN 模型 NLP: BERT 简化了 NLP 任务的训练,提升了 NLP 任务的性能 BERT 如何站在巨人的肩膀上的?使用了哪些 NLP 已有的技术和思想?哪些是 BERT 的创新? 1标题 + 作者 BERT: Pre-trainin

[论文笔记]LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

引言 今天带来第一篇量化论文LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale笔记。 为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。 大语言模型已被广泛采用,但推理时需要大量的GPU内存。我们开发了一种Int8矩阵乘法的过程,用于Transformer中的前馈和注意力投影层,这可以将推理所需

LLVM入门2:如何基于自己的代码生成IR-LLVM IR code generation实例介绍

概述 本节将通过一个简单的例子来介绍如何生成llvm IR,以Kaleidoscope IR中的例子为例,我们基于LLVM接口构建一个简单的编译器,实现简单的语句解析并转化为LLVM IR,生成对应的LLVM IR部分,代码如下,文件名为toy.cpp,先给出代码,后面会详细介绍每一步分代码: #include "llvm/ADT/APFloat.h"#include "llvm/ADT/S