【因果推断python】28_面板数据和固定效应2

2024-06-12 01:12

本文主要是介绍【因果推断python】28_面板数据和固定效应2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

固定效应


固定效应

为了方面后面更正式地讲述,让我们首先看一下我们拥有的数据。按照我们的例子,我们将尝试估计婚姻对收入的影响。我们的数据包含多年以来多个个体 (nr) 的这两个变量,married 和lwage。请注意,工资采用对数形式。除此之外,我们还有其他控制措施,例如当年的工作小时数、受教育年限等。

from linearmodels.datasets import wage_panel
data = wage_panel.load()
data.head()

通常,固定效应模型定义为

y_{it}=\beta X_{it}+\gamma U_i+e_{it}

其中 y_{it}是个体 i 在时间 t 的结果,X_{it} 是个体变量的向量i 在时间 t。 U_i 是单个 i 的一组不可观测值。请注意,这些不可观测值随着时间的推移是不变的,因此缺少时间下标。最后,e_{it} 是错误项。对于教育示例,y_{it} 是对数工资,X_{it} 是随时间变化的可观察变量,例如婚姻和经验,U_i是每个人没有观察到但不变的变量,例如美丽和智力。

现在,请记住我说过使用具有固定效果模型的面板数据就像为实体添加虚拟对象一样简单。这是真的,但在实践中,我们实际上并没有这样做。想象一个我们有 100 万客户的数据集。如果我们为它们中的每一个添加一个 dummy,我们最终会得到 100 万列,这可能不是一个好主意。相反,我们使用将线性回归划分为 2 个独立模型的技巧。我们以前见过这个,但现在是回顾它的好时机。假设您有一个线性回归模型,其中包含一组特征 X_1 和另一组特征 X_2

\hat{Y}=\hat{\beta_{1}}X_{1}+\hat{\beta_{2}}X_{2}

其中 X_1 和 X_2 是特征矩阵(每个特征一行,每个观察一列)和 \hat{\beta_{1}} 和 \hat{\beta_{2}} 是行向量。您可以通过执行获得完全相同的 \hat{\beta_{1}} 参数

  1. 在第二组特征 \hat{y^*}=\hat{\gamma_1}X_2 上回归结果 y
  2. 在第二个 \hat{X_1}=\hat{\gamma_2}X_2 上回归第一组特征
  3. 得到残差 \tilde{X}_1=X_1-\hat{X}_1 和 \tilde{y}_1=y_1-\hat{y^*}
  4. 将结果的残差回归到特征残差 \hat{y}=\hat{\beta_1}\tilde{X_1}

最后一次回归的参数将与使用所有特征运行回归完全相同。但这究竟对我们有什么帮助呢?好吧,我们可以将带有实体假人的模型的估计分解为 2。首先,我们使用假人来预测结果和特征。这些是上面的步骤 1 和 2。

现在,还记得在虚拟变量上运行回归是如何像估计该虚拟变量的平均值一样简单吗?如果你不这样做,让我们用我们的数据来证明这是真的。让我们运行一个模型,我们将工资预测为虚拟年份的函数。

mod = smf.ols("lwage ~ C(year)", data=data).fit()
mod.summary().tables[1]

请注意该模型如何预测 1980 年的平均收入为 1.3935,1981 年的平均收入为 1.5129 (1.3935+0.1194) 等等。 现在,如果我们按年份计算平均值,我们会得到完全相同的结果。 (请记住,基准年 1980 是截距。因此,您必须将截距添加到其他年份的参数中才能获得该年的平均lwage)。

data.groupby("year")["lwage"].mean()

这意味着,如果我们得到面板中每个人的平均值,我们基本上是在对其他变量进行个体虚拟回归。这激发了以下估计过程:

  1. 通过减去个人的平均值来创建时间贬损变量: $\ddot{Y}{it} = Y{it} - \bar{Y}i\ddot{X}{it} = X_{it} - \bar{X}_i$

  2. \ddot{X}{it}上回归上回归\ddot{Y}{it}

请注意,当我们这样做时,未观察到的 U_{i} 消失了。由于 U_{i} 在时间上是恒定的,所以我们有 \bar{U}_i=U_i。如果我们有以下两个方程组

Y_{it} = \beta X_{it} + \gamma U_i + e_{it} \\\bar{Y}{i} = \beta \bar{X}{it} + \gamma \bar{U}i + \bar{e}{it}

我们从另一个中减去一个,我们得到

(Y_{it} - \bar{Y}{i}) = (\beta X{it} - \beta \bar{X}{it}) + (\gamma U_i - \gamma U_i) + ( e{it}-\bar{e}{it}) \\ (Y{it} - \bar{Y}{i}) = \beta(X{it} - \bar{X}{it}) + (e{it}-\bar{e}{it}) \\ \ddot{Y}{it} = \beta \ddot{X}{it} + \ddot{e}{it}

它消除了所有未观察到的随时间不变的事物。老实说,不仅未观察到的变量消失了。这发生在所有时间不变的变量上。因此,您不能包含任何随时间保持不变的变量,因为它们将是虚拟变量的线性组合,并且模型不会运行。

要检查哪些变量是这些变量,我们可以按个体对数据进行分组并获得标准差的总和。如果它为零,则意味着对于任何个人来说,变量都不会随时间变化。

data.groupby("nr").std().sum()
year            1334.971910
black              0.000000
exper           1334.971910
hisp               0.000000
hours         203098.215649
married          140.372801
educ               0.000000
union            106.512445
lwage            173.929670
expersq        17608.242825
occupation       739.222281
dtype: float64

对于我们的数据,我们需要删除实体假人,blackhisp,因为它们对于个人来说是恒定的。 此外,我们需要取消教育。 我们也不会使用职业,因为这可能会调节婚姻对工资的影响(可能是单身男性能够承担更多时间要求更高的职位)。 选择了我们将使用的功能后,是时候估计这个模型了。

要运行我们的固定效应模型,首先,让我们获取平均数据。 我们可以通过按个人对所有内容进行分组并取平均值来实现这一点。

Y = "lwage"
T = "married"
X = [T, "expersq", "union", "hours"]mean_data = data.groupby("nr")[X+[Y]].mean()
mean_data.head()

为了将数据围绕均值标准化(demean),我们需要将原始数据的索引设置为个体标识符,nr。 然后,我们可以简单地从一个数据集中减去对应的数据均值的数据集。

demeaned_data = (data.set_index("nr") # set the index as the person indicator[X+[Y]]- mean_data) # subtract the mean datademeaned_data.head()

mod = smf.ols(f"{Y} ~ {'+'.join(X)}", data=demeaned_data).fit()
mod.summary().tables[1]

如果我们相信固定效应消除了所有遗漏的变量偏差,那么这个模型告诉我们婚姻使男人的工资增加了 11%。 这个结果非常显着。 这里的一个细节是,对于固定效应模型,需要对标准误差进行聚类。 因此,我们可以使用库 linearmodels 并将参数 cluster_entity 设置为 True,而不是手动进行所有估计(这只是出于教学原因)。

from linearmodels.panel import PanelOLS
mod = PanelOLS.from_formula("lwage ~ expersq+union+married+hours+EntityEffects",data=data.set_index(["nr", "year"]))result = mod.fit(cov_type='clustered', cluster_entity=True)
result.summary.tables[1]

mod = smf.ols("lwage ~ expersq+union+married+hours+black+hisp+educ", data=data).fit()
mod.summary().tables[1]

这个模型是说婚姻使男人的工资增加了 14%。 比我们在固定效应模型中发现的效应要大一些。 这表明由于固定的个体因素(如智力和美貌)没有被添加到模型中,结果存在一些省略变量偏差。

这篇关于【因果推断python】28_面板数据和固定效应2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1052780

相关文章

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Ubuntu固定虚拟机ip地址的方法教程

《Ubuntu固定虚拟机ip地址的方法教程》本文详细介绍了如何在Ubuntu虚拟机中固定IP地址,包括检查和编辑`/etc/apt/sources.list`文件、更新网络配置文件以及使用Networ... 1、由于虚拟机网络是桥接,所以ip地址会不停地变化,接下来我们就讲述ip如何固定 2、如果apt安

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详