第十五届蓝桥杯pb组国赛E题[马与象] (15分)BFS算法 详解

2024-06-11 22:44

本文主要是介绍第十五届蓝桥杯pb组国赛E题[马与象] (15分)BFS算法 详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

博客主页:誓则盟约

系列专栏:IT竞赛 专栏

关注博主,后期持续更新系列文章

如果有错误感谢请大家批评指出,及时修改

感谢大家点赞👍收藏⭐评论✍


问题描述:

        小蓝有一个大小为 N × N 的棋盘(棋子可以走的位置有 (N + 1) × (N + 1) 个),棋盘上只有两个棋子:一个马和一个象,他们的行动规则是:马走日,马 可以走到一个日字形状的对角;象飞田,象可以走到一个田字形状的对角,即 斜着走两格(注意无需遵守象棋中的蹩马腿、塞象眼的规则)。在下图所示的大 小为 4 × 4 的棋盘上,展示了两种棋子具体的行进方式:

        在任意一方先手、每一方都可以连续走任意步的情况下,请问有没有可能 出现一方吃掉另一方的局面,如果有,请输出最少需要经过几步可以达到这个 局面,否则输出 −1 。注意:棋子不能走出棋盘。 

【输入格式】

        输入一行包括五个整数 N, x1, y1, x2, y2 ,相邻整数之间使用一个空格分隔, 表示棋盘大  小、马的初始位置 (x1, y1) 以及象的初始位置 (x2, y2) 。

【输出格式】

  输出一行包含一个整数表示答案。如果答案不存在输出 −1 。

【样例输入】

  4 0 2 1 2

【样例输出】

  3

【样例说明】

【样例输入】

  4 2 2 2 3

【样例输出】

  2

【样例说明】

  各走一步可能出现一方吃掉另一方的局面。

【评测用例规模与约定】

  对于 50% 的评测用例,1 ≤ N ≤ 10 ; 对于所有评测用例,1 ≤ N ≤ 50 ,0 ≤ x1, y1, x2, y2 ≤ N 。 


 分析问题:

        首先,这个问题很明显是在考察BFS的运用,马和象的可移动规则给了,我们只需要给这两个规则转化为两个dirs,遍历其中一个dirs(这里我们以象为终点,首先遍历象的方向)将其可能到达的坐标加入到列表ls里面存储起来,然后去遍历另一个(马)可能走到的坐标,如果这个坐标在ls里面,那说明他们可以相遇,直接返回当前步数即可(因为我们是BFS广度 优先,此时的步数一定是最少的步数,可以直接返回)。如果没有存在ls里,则继续遍历,直到遍历完所有可以走的坐标为止,此时则说明二者不能相遇,则返回-1即可。这是当前的大致思路,主要还是看代码实现,这道题用了两个BFS,严格考察对BFS和队列的理解和运用能力。


代码实现: 


n,x1,y1,x2,y2=map(int,input().split())def BFSM(n,x1,y1,x2,y2):dirs={lambda x,y:(x+1,y+2),lambda x,y:(x+2,y+1),lambda x,y:(x+2,y-1),lambda x,y:(x+1,y-2),lambda x,y:(x-1,y-2),lambda x,y:(x-2,y-1),lambda x,y:(x-2,y+1),lambda x,y:(x-1,y+2)}dirs2={lambda x,y:(x-2,y+2),lambda x,y:(x+2,y+2),lambda x,y:(x+2,y-2),lambda x,y:(x-2,y-2),}seen=set()st=(x1,y1)ed=(x2,y2)seen.add(st)q=[(st,0)]p=[(ed,0)]seen_1={}seen_1[ed]=0ls=[]while p:now_1,step_1=p.pop(0)for dir in dirs2:new_1=dir(now_1[0],now_1[1])if 0<=new_1[0]<=n+1 and 0<=new_1[1]<=n+1 and new_1 not in seen_1.keys():seen_1[new_1]=step_1+1p.append([new_1,step_1+1])while q:now_node,step=q.pop(0)if now_node in seen_1.keys():kk=step+seen_1[now_node]ls.append(kk)for dir in dirs:new_node=dir(now_node[0],now_node[1])if 0<=new_node[0]<=n+1 and 0<=new_node[1]<=n+1 and new_node not in seen:seen.add(new_node)q.append([new_node,step+1])if ls:return min(ls)else: return -1
print(BFSM(n,x1,y1,x2,y2))

总结:

        这里的n指的是棋盘的边长,而x1y1是起点的坐标,x2y2是终点的坐标。函数BFSM使用了广度优先搜索(Breadth-First Search, BFS)算法,它是一种在图论中用于遍历图或树的数据结构的算法。在这个问题中,图是nn的棋盘,节点是棋盘上的每个位置,边是骑士可以走的合法移动。

下面是代码分步功能的详细解释:

  1. dirs是一个包含八个函数的集合,每个函数代表骑士可以走的八种合法移动的方向。例如,lambda x,y:(x+1,y+2)表示骑士可以从(x, y)移动到(x+1, y+2)

  2. dirs2是一个包含四种函数的集合,每个函数代表终点(x2, y2)可以到达的四个特殊位置。这些位置是终点位置的四个对角线方向上两个单位距离的位置。

  3. seen是一个集合,用于记录已经访问过的节点。

  4. q是广度优先搜索的队列,用于存储待访问的节点及其到起点的距离。

  5. p是另一个队列,用于存储从终点开始的访问过程,目的是找到从终点到起点的路径。

  6. seen_1是一个字典,用于记录从终点开始访问过程中每个节点到终点的距离。

  7. 函数BFSM首先初始化seen集合和q队列,然后开始广度优先搜索。

  8. 在广度优先搜索的过程中,每次检查当前节点now_node是否在seen_1中,如果是,则计算从起点到当前节点的距离加上从当前节点到终点的距离,并将这个总距离添加到ls列表中。

  9. 然后,对于当前节点的每个合法移动方向,检查新位置是否在棋盘。

整体逻辑是通过BFS算法搜索从起点到终点的最短路径。


“ 我们的科学永远只是找到近似真理。”——《爱因斯坦》

“ 我们的科学永远只是找到近似真理。”——《爱因斯坦》

这篇关于第十五届蓝桥杯pb组国赛E题[马与象] (15分)BFS算法 详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1052460

相关文章

Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单

《Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单》:本文主要介绍Springboot的ThreadPoolTaskScheduler线... 目录ThreadPoolTaskScheduler线程池实现15分钟不操作自动取消订单概要1,创建订单后

Mysql 中的多表连接和连接类型详解

《Mysql中的多表连接和连接类型详解》这篇文章详细介绍了MySQL中的多表连接及其各种类型,包括内连接、左连接、右连接、全外连接、自连接和交叉连接,通过这些连接方式,可以将分散在不同表中的相关数据... 目录什么是多表连接?1. 内连接(INNER JOIN)2. 左连接(LEFT JOIN 或 LEFT

Java中switch-case结构的使用方法举例详解

《Java中switch-case结构的使用方法举例详解》:本文主要介绍Java中switch-case结构使用的相关资料,switch-case结构是Java中处理多个分支条件的一种有效方式,它... 目录前言一、switch-case结构的基本语法二、使用示例三、注意事项四、总结前言对于Java初学者

Linux内核之内核裁剪详解

《Linux内核之内核裁剪详解》Linux内核裁剪是通过移除不必要的功能和模块,调整配置参数来优化内核,以满足特定需求,裁剪的方法包括使用配置选项、模块化设计和优化配置参数,图形裁剪工具如makeme... 目录简介一、 裁剪的原因二、裁剪的方法三、图形裁剪工具四、操作说明五、make menuconfig

详解Java中的敏感信息处理

《详解Java中的敏感信息处理》平时开发中常常会遇到像用户的手机号、姓名、身份证等敏感信息需要处理,这篇文章主要为大家整理了一些常用的方法,希望对大家有所帮助... 目录前后端传输AES 对称加密RSA 非对称加密混合加密数据库加密MD5 + Salt/SHA + SaltAES 加密平时开发中遇到像用户的

Springboot使用RabbitMQ实现关闭超时订单(示例详解)

《Springboot使用RabbitMQ实现关闭超时订单(示例详解)》介绍了如何在SpringBoot项目中使用RabbitMQ实现订单的延时处理和超时关闭,通过配置RabbitMQ的交换机、队列和... 目录1.maven中引入rabbitmq的依赖:2.application.yml中进行rabbit

C语言线程池的常见实现方式详解

《C语言线程池的常见实现方式详解》本文介绍了如何使用C语言实现一个基本的线程池,线程池的实现包括工作线程、任务队列、任务调度、线程池的初始化、任务添加、销毁等步骤,感兴趣的朋友跟随小编一起看看吧... 目录1. 线程池的基本结构2. 线程池的实现步骤3. 线程池的核心数据结构4. 线程池的详细实现4.1 初

Python绘制土地利用和土地覆盖类型图示例详解

《Python绘制土地利用和土地覆盖类型图示例详解》本文介绍了如何使用Python绘制土地利用和土地覆盖类型图,并提供了详细的代码示例,通过安装所需的库,准备地理数据,使用geopandas和matp... 目录一、所需库的安装二、数据准备三、绘制土地利用和土地覆盖类型图四、代码解释五、其他可视化形式1.

SpringBoot使用Apache POI库读取Excel文件的操作详解

《SpringBoot使用ApachePOI库读取Excel文件的操作详解》在日常开发中,我们经常需要处理Excel文件中的数据,无论是从数据库导入数据、处理数据报表,还是批量生成数据,都可能会遇到... 目录项目背景依赖导入读取Excel模板的实现代码实现代码解析ExcelDemoInfoDTO 数据传输

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2