网络空间安全数学基础·期末复习

2024-06-11 16:44

本文主要是介绍网络空间安全数学基础·期末复习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、整除与同余

1.最大公因子性质:
(a,b)=(-a,b)=(a,-b)=(-a,-b)=(|a|,|b|)
(0,a)=a

2.最大公因子求解(欧几里得算法、辗转相除法)
例:(-3824,1837)

3.最大公因子定理:
设a,b是两个不全为零的整数,则存在两个整数u, v,使得:(a, b)=ua+vb。
例:将a = 888,b = 312的最大公因子表示为(a,b) = ua+vb。

4.最小公倍数性质:
[a,b] = [–a,b] = [a,–b] = [–a,–b] = [|a|,|b|]
,特别地,如果(a, b) = 1, [a, b] = |ab|。

5.算术基本定理:
定理:每个大于1的整数a都可以分解为有限个素数的乘积:a=p1p2…pr。该分解除素数因子的排列外是唯一的。

6.标准因子分解式:
由于p1,p2,…,pr中可能存在重复,所以a的分解式可表示为有限个素数的幂的乘积:,这称为a的标准因子分解式。

7.Eratosthenes筛法:
设a是任意大于1的整数,则a的除1外最小正因子q是一素数,并且当a是一合数时,
例:
求不超过100的全部素数。

同理可以将因子5,7的倍数划去: (3) 划去5的全部倍数: (4) 划去7的全部倍数。
最终经过上述步骤后剩下的数除1外就是不超过100的全部素 数: (25个)    2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97

8.快速指数算法
例:求解 2^64 (mod 641)

二、群

★1.群的定义:
设G是一非空集合。如果在G上定义了一个代数运算,称为乘法,记为ab,而且这个运算满足下列条件,那么(G,·)称为一个群:
1) G对于乘法是封闭,即对于G中任意元素a,b,有ab∈G;(封闭性)
2) 对于G中任意元素a,b,c,有(ab)c = a(bc) ;(交换律
(满足上述两点则为半群)
3) 在G中有一个元素e,对于G中任意元素a,有 ea=a;(左单位元)
4) 对于G中任一元素a都存在G中的一个元素b,使ba=e。(左逆元)
注意:
1) 左单位元也是右单位元,左逆元也是右逆元,所以单位元和逆元不再区分左右。
2) 单位元和逆元是唯一的。
3) 如果一个非空有限集合G中的运算封闭且满足结合律(半群),则它是一个群的充分必要条件是满足消去律(如果ax=ax’,则x=x’;(左消去) 如果ya=y’a,则y=y’。 (右消去))。

2.群的阶
如果一个群G中元素的个数是无限多个,则称G是无限群;如果G中的元素个数是有限多个,则称G是有限群,G中元素的个数称为群的阶,记为|G|。

3.子群
一个群G的一个子集H如果对于G的乘法构成一个群, 则称H为G的子群,记作H≤G。一个群G至少有两个子群:G本身;只包含单位元的子集{e}, 它们称为G的平凡子群,其他子群成为真子群(H<G)。
注意:
1) 子群与群单位元同一。
2) a∈H,a^(-1)是a在G中的逆元,则a^(-1)∈H。

4.子群判定:
一个群G的一个非空子集H构成一个子群的充分必要条件是:对于∀a,b∈H,有:ab^(-1)∈H。
一个群G的一个非空有限子集H构成一个子群的充分必要条件是:对于任意a,b∈H,有ab∈H。

5.同构与同态
1) 映射
单射:∀a, b∈A,如果a≠b,则 f(a)≠f(b)。
满射:∀b∈B,总有a∈A,使f(a)=b。
一一映射:既是满射又是单射的映射。
2) 同态与同构
假设G和G’是两个群,若存在映射f:G→G’ 满足:∀a, b∈G,均有 f(a·b)= f(a)⊙f(b)则称f是G到G’的一个同态映射或简称同态。
如果f是单射,则称f是单同态;
如果f是满射,则称f是满同态;
如果f是一一映射,则称f是同构映射;
如果G=G’,同态f称为自同态,同构映射f称为自同构映射。
3) 反像
设f是G到G’的同态映射。∀a’∈G’,集合 {a|f(a)=a’, a∈G}可能是空集,也可能包含一个以上的元素(f不是单射)。这个集合称为a’的完全反像。(可以类比函数值y所对应的x值,但并不完全一样,因为一个x仅能对应一个y,而此处一个a’可以有多个a对应,如下图)
特别地,单位元的完全反像称为同态映射f的核,记为ker(f),即ker(f) = {a|a∈G,f(a)=e’},ker(f)是G的子群,称为f的核子群。

这篇关于网络空间安全数学基础·期末复习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1051719

相关文章

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=

uva 11044 Searching for Nessy(小学数学)

题意是给出一个n*m的格子,求出里面有多少个不重合的九宫格。 (rows / 3) * (columns / 3) K.o 代码: #include <stdio.h>int main(){int ncase;scanf("%d", &ncase);while (ncase--){int rows, columns;scanf("%d%d", &rows, &col

客户案例:安全海外中继助力知名家电企业化解海外通邮困境

1、客户背景 广东格兰仕集团有限公司(以下简称“格兰仕”),成立于1978年,是中国家电行业的领军企业之一。作为全球最大的微波炉生产基地,格兰仕拥有多项国际领先的家电制造技术,连续多年位列中国家电出口前列。格兰仕不仅注重业务的全球拓展,更重视业务流程的高效与顺畅,以确保在国际舞台上的竞争力。 2、需求痛点 随着格兰仕全球化战略的深入实施,其海外业务快速增长,电子邮件成为了关键的沟通工具。

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

安全管理体系化的智慧油站开源了。

AI视频监控平台简介 AI视频监控平台是一款功能强大且简单易用的实时算法视频监控系统。它的愿景是最底层打通各大芯片厂商相互间的壁垒,省去繁琐重复的适配流程,实现芯片、算法、应用的全流程组合,从而大大减少企业级应用约95%的开发成本。用户只需在界面上进行简单的操作,就可以实现全视频的接入及布控。摄像头管理模块用于多种终端设备、智能设备的接入及管理。平台支持包括摄像头等终端感知设备接入,为整个平台提

2024网安周今日开幕,亚信安全亮相30城

2024年国家网络安全宣传周今天在广州拉开帷幕。今年网安周继续以“网络安全为人民,网络安全靠人民”为主题。2024年国家网络安全宣传周涵盖了1场开幕式、1场高峰论坛、5个重要活动、15场分论坛/座谈会/闭门会、6个主题日活动和网络安全“六进”活动。亚信安全出席2024年国家网络安全宣传周开幕式和主论坛,并将通过线下宣讲、创意科普、成果展示等多种形式,让广大民众看得懂、记得住安全知识,同时还