mmdetection使用未定义backbone训练

2024-06-11 13:44

本文主要是介绍mmdetection使用未定义backbone训练,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

首先找到你需要用到的 backbone,一般有名的backbone 都会在github有相应的代码开源和预训练权重提供
本文以mobilenetv3 + fastercnn 作为举例,在mmdetection中并未提供 mobilenetv3,提供的仅有 mobilenetv2;
在github上找到 mobilenetv3 实现和权重,下载到本地;本文使用参考为:https://github.com/d-li14/mobilenetv3.pytorch

为了能够用在mmdetection体系中,我们要对代码进行修改,以适应mmdetection 配置式构建网络

增加 init_weigths函数

 def init_weights(self, pretrained=None):logger = get_root_logger()if self.init_cfg is None and pretrained is None:logger.warn(f'No pre-trained weights for 'f'{self.__class__.__name__}, 'f'training start from scratch')passelse:assert 'checkpoint' in self.init_cfg, f'Only support ' \f'specify `Pretrained` in ' \f'`init_cfg` in ' \f'{self.__class__.__name__} 'if self.init_cfg is not None:ckpt_path = self.init_cfg['checkpoint']elif pretrained is not None:ckpt_path = pretrainedckpt = _load_checkpoint(ckpt_path, logger=logger, map_location='cpu')if 'state_dict' in ckpt:_state_dict = ckpt['state_dict']elif 'model' in ckpt:_state_dict = ckpt['model']else:_state_dict = ckptstate_dict = _state_dictmissing_keys, unexpected_keys = \self.load_state_dict(state_dict, False)logger.info(f"Miss {missing_keys}")logger.info(f"Unexpected {unexpected_keys}")

修改 模型参数列表

可以看到上面用到了 self.init_cfg ,但原始模型并没有,因此需要
修改模型参数列表,添加 init_cfg,out_indices,等
并初始化

修改forward 【结合模型特点、网络结构 进行修改,将out_indices 对应的输出取出来】

def forward(self, x):outs = []# x = self.features(x)for i,f in enumerate(self.features):x = f(x)if i in self.out_indices:outs.append(x)assert (len(outs) == 4)return outs

有些网络的实现并不是直接使用,而是使用配置,来提供不同类型的网络模型,这里就有 small large 两种
由于我们上面的 模型类 修改了参数列表,因此也需要对 这种二次配置的函数 参数列表进行修改 添加 init_cfg,out_indices 等,原有参数尽量保持不变

def mobilenetv3_large(pretrained=False, num_classes = 1000, distillation=False, init_cfg=None, out_indices=[],**kwargs):# ...cfgs = []return MobileNetV3(cfgs, mode='large',init_cfg=init_cfg, out_indices=out_indices,**kwargs)

添加注解

然后,我们要将他们添加到 mmdet 中的 registry 中,
mmdet提供了一种 装饰器的模式 用于将我们自定义的模型 加入到其中

# 导入
from mmdet.models.builder import BACKBONES,MODELS,Necks # 这里定义了mmdetection 的各种组件# 添加 注解
@BACKBONES.register_module()
def mobilenetv3_large():#...@BACKBONES.register_module()
def mobilenetv3_small():#...

这个时候,我们的文件基本修改完成

注意事项

注意这个时候 其实只是配置完成,但在运行时 不会真正加载到 registry 中 ,运行就会发现报错

'mobilenetv3_large is not in the models registry'"

解决方法 就是运行时引入,在train.py 导入这个文件

import mobilenetv3

我在配置时就遇到了这样情况,感谢 https://blog.csdn.net/Kiki_soda/article/details/137491803 提醒

debug

image.png
可以看到 我们的模型已经被加载进去

其他方法

官方提供的方法

  1. 一种是 修改源码层中的 init 文件,这个也要求你的mobilenet文件也要定义在源码文件中
  2. 使用一种 custom_imports 【尝试未成功】

具体参考官方文档 https://mmdetection.readthedocs.io/zh-cn/v2.21.0/tutorials/customize_models.html

配置文件

然后配置文件,根据模型结构合理设置参数

_base_ = ['./_base_/models/faster_rcnn_r50_fpn.py','./_base_/datasets/coco_detection.py','./_base_/schedules/schedule_1x.py', './_base_/default_runtime.py'
]model = dict(backbone=dict(type='mobilenetv3_large',init_cfg=dict(type='Pretrained',checkpoint='pretrain/mobilenetv3-large-1cd25616.pth', # 预训练权重位置),out_indices = [2, 5, 9, 14], # 根据模型来设置),neck=dict(type='FPN',in_channels=[24, 40, 80, 160], # 根据模型来设置 和out_indices 对应out_channels=256, # 修改这个会牵动 下面很多配置; 如需修改 其他后续参数也需修改num_outs=5))

完成!就可以开始训练了

对于如何设置 out_indices,可以参考 timm 提供的模型 特征输出情况,进而设置

参考:

https://blog.csdn.net/Kiki_soda/article/details/137491803
https://mmdetection.readthedocs.io/zh-cn/v2.21.0/tutorials/customize_models.html
https://www.cnblogs.com/qiulinzhang/p/12252033.html

这篇关于mmdetection使用未定义backbone训练的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1051335

相关文章

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

使用SQL语言查询多个Excel表格的操作方法

《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和... 目录如何用SQL语言查询多个Excel表格如何使用sql查询excel内容1. 简介2. 实现思路3

java脚本使用不同版本jdk的说明介绍

《java脚本使用不同版本jdk的说明介绍》本文介绍了在Java中执行JavaScript脚本的几种方式,包括使用ScriptEngine、Nashorn和GraalVM,ScriptEngine适用... 目录Java脚本使用不同版本jdk的说明1.使用ScriptEngine执行javascript2.

c# checked和unchecked关键字的使用

《c#checked和unchecked关键字的使用》C#中的checked关键字用于启用整数运算的溢出检查,可以捕获并抛出System.OverflowException异常,而unchecked... 目录在 C# 中,checked 关键字用于启用整数运算的溢出检查。默认情况下,C# 的整数运算不会自

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

Mybatis官方生成器的使用方式

《Mybatis官方生成器的使用方式》本文详细介绍了MyBatisGenerator(MBG)的使用方法,通过实际代码示例展示了如何配置Maven插件来自动化生成MyBatis项目所需的实体类、Map... 目录1. MyBATis Generator 简介2. MyBatis Generator 的功能3

Python中使用defaultdict和Counter的方法

《Python中使用defaultdict和Counter的方法》本文深入探讨了Python中的两个强大工具——defaultdict和Counter,并详细介绍了它们的工作原理、应用场景以及在实际编... 目录引言defaultdict的深入应用什么是defaultdictdefaultdict的工作原理

使用Python进行文件读写操作的基本方法

《使用Python进行文件读写操作的基本方法》今天的内容来介绍Python中进行文件读写操作的方法,这在学习Python时是必不可少的技术点,希望可以帮助到正在学习python的小伙伴,以下是Pyth... 目录一、文件读取:二、文件写入:三、文件追加:四、文件读写的二进制模式:五、使用 json 模块读写

Python使用qrcode库实现生成二维码的操作指南

《Python使用qrcode库实现生成二维码的操作指南》二维码是一种广泛使用的二维条码,因其高效的数据存储能力和易于扫描的特点,广泛应用于支付、身份验证、营销推广等领域,Pythonqrcode库是... 目录一、安装 python qrcode 库二、基本使用方法1. 生成简单二维码2. 生成带 Log

Python如何使用seleniumwire接管Chrome查看控制台中参数

《Python如何使用seleniumwire接管Chrome查看控制台中参数》文章介绍了如何使用Python的seleniumwire库来接管Chrome浏览器,并通过控制台查看接口参数,本文给大家... 1、cmd打开控制台,启动谷歌并制定端口号,找不到文件的加环境变量chrome.exe --rem