mmdetection使用未定义backbone训练

2024-06-11 13:44

本文主要是介绍mmdetection使用未定义backbone训练,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

首先找到你需要用到的 backbone,一般有名的backbone 都会在github有相应的代码开源和预训练权重提供
本文以mobilenetv3 + fastercnn 作为举例,在mmdetection中并未提供 mobilenetv3,提供的仅有 mobilenetv2;
在github上找到 mobilenetv3 实现和权重,下载到本地;本文使用参考为:https://github.com/d-li14/mobilenetv3.pytorch

为了能够用在mmdetection体系中,我们要对代码进行修改,以适应mmdetection 配置式构建网络

增加 init_weigths函数

 def init_weights(self, pretrained=None):logger = get_root_logger()if self.init_cfg is None and pretrained is None:logger.warn(f'No pre-trained weights for 'f'{self.__class__.__name__}, 'f'training start from scratch')passelse:assert 'checkpoint' in self.init_cfg, f'Only support ' \f'specify `Pretrained` in ' \f'`init_cfg` in ' \f'{self.__class__.__name__} 'if self.init_cfg is not None:ckpt_path = self.init_cfg['checkpoint']elif pretrained is not None:ckpt_path = pretrainedckpt = _load_checkpoint(ckpt_path, logger=logger, map_location='cpu')if 'state_dict' in ckpt:_state_dict = ckpt['state_dict']elif 'model' in ckpt:_state_dict = ckpt['model']else:_state_dict = ckptstate_dict = _state_dictmissing_keys, unexpected_keys = \self.load_state_dict(state_dict, False)logger.info(f"Miss {missing_keys}")logger.info(f"Unexpected {unexpected_keys}")

修改 模型参数列表

可以看到上面用到了 self.init_cfg ,但原始模型并没有,因此需要
修改模型参数列表,添加 init_cfg,out_indices,等
并初始化

修改forward 【结合模型特点、网络结构 进行修改,将out_indices 对应的输出取出来】

def forward(self, x):outs = []# x = self.features(x)for i,f in enumerate(self.features):x = f(x)if i in self.out_indices:outs.append(x)assert (len(outs) == 4)return outs

有些网络的实现并不是直接使用,而是使用配置,来提供不同类型的网络模型,这里就有 small large 两种
由于我们上面的 模型类 修改了参数列表,因此也需要对 这种二次配置的函数 参数列表进行修改 添加 init_cfg,out_indices 等,原有参数尽量保持不变

def mobilenetv3_large(pretrained=False, num_classes = 1000, distillation=False, init_cfg=None, out_indices=[],**kwargs):# ...cfgs = []return MobileNetV3(cfgs, mode='large',init_cfg=init_cfg, out_indices=out_indices,**kwargs)

添加注解

然后,我们要将他们添加到 mmdet 中的 registry 中,
mmdet提供了一种 装饰器的模式 用于将我们自定义的模型 加入到其中

# 导入
from mmdet.models.builder import BACKBONES,MODELS,Necks # 这里定义了mmdetection 的各种组件# 添加 注解
@BACKBONES.register_module()
def mobilenetv3_large():#...@BACKBONES.register_module()
def mobilenetv3_small():#...

这个时候,我们的文件基本修改完成

注意事项

注意这个时候 其实只是配置完成,但在运行时 不会真正加载到 registry 中 ,运行就会发现报错

'mobilenetv3_large is not in the models registry'"

解决方法 就是运行时引入,在train.py 导入这个文件

import mobilenetv3

我在配置时就遇到了这样情况,感谢 https://blog.csdn.net/Kiki_soda/article/details/137491803 提醒

debug

image.png
可以看到 我们的模型已经被加载进去

其他方法

官方提供的方法

  1. 一种是 修改源码层中的 init 文件,这个也要求你的mobilenet文件也要定义在源码文件中
  2. 使用一种 custom_imports 【尝试未成功】

具体参考官方文档 https://mmdetection.readthedocs.io/zh-cn/v2.21.0/tutorials/customize_models.html

配置文件

然后配置文件,根据模型结构合理设置参数

_base_ = ['./_base_/models/faster_rcnn_r50_fpn.py','./_base_/datasets/coco_detection.py','./_base_/schedules/schedule_1x.py', './_base_/default_runtime.py'
]model = dict(backbone=dict(type='mobilenetv3_large',init_cfg=dict(type='Pretrained',checkpoint='pretrain/mobilenetv3-large-1cd25616.pth', # 预训练权重位置),out_indices = [2, 5, 9, 14], # 根据模型来设置),neck=dict(type='FPN',in_channels=[24, 40, 80, 160], # 根据模型来设置 和out_indices 对应out_channels=256, # 修改这个会牵动 下面很多配置; 如需修改 其他后续参数也需修改num_outs=5))

完成!就可以开始训练了

对于如何设置 out_indices,可以参考 timm 提供的模型 特征输出情况,进而设置

参考:

https://blog.csdn.net/Kiki_soda/article/details/137491803
https://mmdetection.readthedocs.io/zh-cn/v2.21.0/tutorials/customize_models.html
https://www.cnblogs.com/qiulinzhang/p/12252033.html

这篇关于mmdetection使用未定义backbone训练的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1051335

相关文章

Mysql中RelayLog中继日志的使用

《Mysql中RelayLog中继日志的使用》MySQLRelayLog中继日志是主从复制架构中的核心组件,负责将从主库获取的Binlog事件暂存并应用到从库,本文就来详细的介绍一下RelayLog中... 目录一、什么是 Relay Log(中继日志)二、Relay Log 的工作流程三、Relay Lo

使用Redis实现会话管理的示例代码

《使用Redis实现会话管理的示例代码》文章介绍了如何使用Redis实现会话管理,包括会话的创建、读取、更新和删除操作,通过设置会话超时时间并重置,可以确保会话在用户持续活动期间不会过期,此外,展示了... 目录1. 会话管理的基本概念2. 使用Redis实现会话管理2.1 引入依赖2.2 会话管理基本操作

Springboot请求和响应相关注解及使用场景分析

《Springboot请求和响应相关注解及使用场景分析》本文介绍了SpringBoot中用于处理HTTP请求和构建HTTP响应的常用注解,包括@RequestMapping、@RequestParam... 目录1. 请求处理注解@RequestMapping@GetMapping, @PostMappin

springboot3.x使用@NacosValue无法获取配置信息的解决过程

《springboot3.x使用@NacosValue无法获取配置信息的解决过程》在SpringBoot3.x中升级Nacos依赖后,使用@NacosValue无法动态获取配置,通过引入SpringC... 目录一、python问题描述二、解决方案总结一、问题描述springboot从2android.x

SpringBoot整合AOP及使用案例实战

《SpringBoot整合AOP及使用案例实战》本文详细介绍了SpringAOP中的切入点表达式,重点讲解了execution表达式的语法和用法,通过案例实战,展示了AOP的基本使用、结合自定义注解以... 目录一、 引入依赖二、切入点表达式详解三、案例实战1. AOP基本使用2. AOP结合自定义注解3.

Python中Request的安装以及简单的使用方法图文教程

《Python中Request的安装以及简单的使用方法图文教程》python里的request库经常被用于进行网络爬虫,想要学习网络爬虫的同学必须得安装request这个第三方库,:本文主要介绍P... 目录1.Requests 安装cmd 窗口安装为pycharm安装在pycharm设置中为项目安装req

使用Python将PDF表格自动提取并写入Word文档表格

《使用Python将PDF表格自动提取并写入Word文档表格》在实际办公与数据处理场景中,PDF文件里的表格往往无法直接复制到Word中,本文将介绍如何使用Python从PDF文件中提取表格数据,并将... 目录引言1. 加载 PDF 文件并准备 Word 文档2. 提取 PDF 表格并创建 Word 表格

使用Python实现局域网远程监控电脑屏幕的方法

《使用Python实现局域网远程监控电脑屏幕的方法》文章介绍了两种使用Python在局域网内实现远程监控电脑屏幕的方法,方法一使用mss和socket,方法二使用PyAutoGUI和Flask,每种方... 目录方法一:使用mss和socket实现屏幕共享服务端(被监控端)客户端(监控端)方法二:使用PyA

Python使用Matplotlib和Seaborn绘制常用图表的技巧

《Python使用Matplotlib和Seaborn绘制常用图表的技巧》Python作为数据科学领域的明星语言,拥有强大且丰富的可视化库,其中最著名的莫过于Matplotlib和Seaborn,本篇... 目录1. 引言:数据可视化的力量2. 前置知识与环境准备2.1. 必备知识2.2. 安装所需库2.3

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度