【深度学习】Loss为Nan的可能原因

2024-06-11 12:28

本文主要是介绍【深度学习】Loss为Nan的可能原因,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1. 问题情境
  • 2. 原因分析
  • 3. 导致Loss为Nan的其他可能原因

1. 问题情境

在某个网络架构下,我为某个数据项引入了一个损失函数。
这个数据项是nn.Embedding类型的,我加入的损失函数是对nn.Embedding空间做约束。
因为我在没加入优化loss前,我的nn.Embedding的数据不在同一条直线上,希望通过下面这样一个loss,约束它们在同一条直线上:
在这里插入图片描述
我的变量计算是这么写的:

embedding = self.latent_codes(idx) # 通过nn.Embedding,根据idx获得对应的latent codes
vecs = self.latent_codes.weight.data # 获得所有的latent codes
d1 = torch.sum((vecs[0].unsqueeze(0) - embedding) ** 2, dim=1).sqrt() # 计算第i个latent codes到0的距离
d2 = torch.sum((vecs[len(vecs) - 1].unsqueeze(0) - embedding) ** 2, dim=1).sqrt() # 计算第i个latent codes到-1的距离
standard_distance = torch.dist(vecs[0], vecs[len(vecs) - 1], p=2) # 计算0-(-1)的标准距离

然后loss是这么写的:

latent_space_constraint = torch.abs(d1 + d2 - standard_distance) # 约束三点在一条直线上

结果导致了loss为Nan的情况

2. 原因分析

一开始没啥头绪,然后问了一下通义千问,loss为Nan的可能原因,给出的回答是:
------------------------------------
可能是数值稳定性问题:
新损失项的计算可能导致数值下溢或上溢,特别是在涉及指数函数、对数函数或其他可能导致极端值的数学运算时。
解决方案包括添加一个小的正偏移量(例如 1e-8)来避免除以零或对零取对数,或者使用数值稳定的损失函数实现。
------------------------------------
因为上述代码中,idx=0idx=-1(此处用-1表示最后一个变量)得到的d1/d2可能为0,然后导致latent_space_constraint中对应计算结果为0,这可能是导致Nan的结果

于是我直接在loss上加了一个 λ \lambda λ

latent_space_constraint = torch.abs(d1 + d2 - standard_distance) + 1e-8

但是完全没用,还是会出现Nan的问题,于是我问的第二个问题是:解决方案包括添加一个小的正偏移量(例如 1e-8)来避免除以零或对零取对数,或者使用数值稳定的损失函数实现。这个小的正偏移量是在loss上直接加吗?,给出的回答是:
------------------------------------
在深度学习中,为了避免数值不稳定的情况,比如在损失函数中对非常接近零的数取对数或除以接近零的数,我们确实会添加一个小的正偏移量(常被称为 epsilon)。但是,这个偏移量不是直接加到整个损失函数上,而是加到可能会引起数值不稳定的部分上。

------------------------------------
那么我可能引起数值不稳定的地方实际上是d1/d2/standard_distance,所以把代码修改成在数值计算的时候加小的偏移量

embedding = self.latent_codes(idx) # 通过nn.Embedding,根据idx获得对应的latent codes
vecs = self.latent_codes.weight.data # 获得所有的latent codes
d1 = torch.sum((vecs[0].unsqueeze(0) - embedding) ** 2 + 1e-8, dim=1).sqrt() # 计算第i个latent codes到0的距离
d2 = torch.sum((vecs[len(vecs) - 1].unsqueeze(0) - embedding) ** 2 + 1e-8, dim=1).sqrt() # 计算第i个latent codes到-1的距离
standard_distance = torch.dist(vecs[0], vecs[len(vecs) - 1] + 1e-8, p=2) # 计算0-(-1)的标准距离

解决上述问题,loss计算正常,但是还要考虑的是这个loss会不会导致所有embedding趋向同一个点的情况,还要约束0和-1的latent codes不能过于相似

3. 导致Loss为Nan的其他可能原因

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
当在深度学习模型中加入新的损失项后,特定的权重或参数变为 NaN,这通常指向几个关键的问题区域。对于您的情况,pose_latent_codes 中的特定条目(索引为 0 和 5)在一轮优化后变为 NaN,可能的原因如下:

  1. 特定输入导致的数值不稳定

    • 加入的新损失项可能对某些输入特别敏感,导致计算中出现极大的数值或数值下溢,最终产生 NaN。这可能是因为输入数据中的异常值或不适当的数据预处理。
  2. 梯度爆炸

    • 特定输入或损失计算可能导致针对 pose_latent_codes 的梯度变得非常大,特别是对于索引 0 和 5 的条目。这通常发生在深度神经网络中,尤其是当网络层深且梯度在反向传播过程中累积时。
  3. 正则化或惩罚项

    • 如果新加入的损失项包含正则化项(如 L1 或 L2 正则化),并且正则化强度设置得过高,这可能对某些参数造成过度惩罚,导致 NaN。
  4. 数值计算错误

    • 在新损失项的计算中,可能有某些操作(如除以接近零的数、对负数取对数等)导致了数值不稳定,进而产生 NaN。
  5. 代码错误或实现问题

    • 实现新损失项时可能有代码错误,比如数组索引错误、维度不匹配、数据类型不一致等,这些问题在特定情况下才显现出来,例如针对 pose_latent_codes 的特定条目。

排查和解决方案:

  • 检查输入数据:确认数据预处理步骤,确保没有异常值或不合理的数据点进入模型,特别是在索引 0 和 5 的位置。

  • 梯度裁剪:在优化器中使用梯度裁剪技术,限制梯度的大小,防止梯度爆炸。

  • 降低学习率:尝试降低学习率,以减少每一步更新的幅度,使训练更加稳定。

  • 检查正则化项:如果新损失项包含正则化,尝试降低正则化系数,或检查正则化项的实现是否正确。

  • 数值稳定性改进:在损失计算中加入数值稳定性措施,比如避免除以零、使用 log-sum-exp 技巧避免数值下溢等。

  • 代码审查:仔细审查新损失项的实现代码,确保所有操作都是正确的,没有潜在的逻辑错误或数据类型不匹配。

  • 逐层检查梯度:在训练过程中打印各层的梯度,识别梯度异常增大的层,有助于定位问题所在。

通过上述步骤,您可以逐步排查并解决导致特定权重变为 NaN 的问题。在复杂模型中,问题可能不单一,需要综合多个方面的检查和调整。
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

这篇关于【深度学习】Loss为Nan的可能原因的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1051163

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

流媒体平台/视频监控/安防视频汇聚EasyCVR播放暂停后视频画面黑屏是什么原因?

视频智能分析/视频监控/安防监控综合管理系统EasyCVR视频汇聚融合平台,是TSINGSEE青犀视频垂直深耕音视频流媒体技术、AI智能技术领域的杰出成果。该平台以其强大的视频处理、汇聚与融合能力,在构建全栈视频监控系统中展现出了独特的优势。视频监控管理系统EasyCVR平台内置了强大的视频解码、转码、压缩等技术,能够处理多种视频流格式,并以多种格式(RTMP、RTSP、HTTP-FLV、WebS

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【测试】输入正确用户名和密码,点击登录没有响应的可能性原因

目录 一、前端问题 1. 界面交互问题 2. 输入数据校验问题 二、网络问题 1. 网络连接中断 2. 代理设置问题 三、后端问题 1. 服务器故障 2. 数据库问题 3. 权限问题: 四、其他问题 1. 缓存问题 2. 第三方服务问题 3. 配置问题 一、前端问题 1. 界面交互问题 登录按钮的点击事件未正确绑定,导致点击后无法触发登录操作。 页面可能存在

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识