谷歌AI助力软件工程的进展及未来展望

2024-06-11 08:36

本文主要是介绍谷歌AI助力软件工程的进展及未来展望,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行! 订阅:https://rengongzhineng.io/

回顾与现状

在2019年,无论是在谷歌还是其他地方,软件工程师们虽然听说过机器学习的进步,特别是深度学习在计算机视觉和语言翻译领域的显著效果,但他们很难想象这些技术会如何在软件开发中产生影响。仅仅五年后的2024年,AI辅助写代码已成为软件工程师中的热门话题,许多人都在使用基于机器学习的自动补全工具,无论是公司内部工具(如谷歌的内部代码补全)还是商业产品。

谷歌在这篇博客中,介绍了内部软件开发工具的最新AI改进,并讨论了未来五年的预期变化。团队负责谷歌工程师大部分时间所用的软件开发环境,包括内循环(如IDE、代码审查、代码搜索)和外循环界面(如缺陷管理、规划)。通过这些改进,直接提升了开发者的生产力和满意度,这是谷歌密切关注的两个指标。

挑战

AI技术发展迅速,预测哪些想法应该首先探索一直是个挑战。技术上可行的演示与成功产品化之间通常存在显著差距。谷歌遵循三条准则来将想法应用于产品:

  1. 优先考虑技术可行性和影响力:专注于已经确定技术可行性并对工程师工作流程有高影响力的想法。
  2. 快速学习以改进用户体验和模型质量:专注于快速迭代和提取经验教训,同时保障开发者的生产力和幸福感。用户体验与模型质量同样重要。
  3. 衡量效果:目标是提升生产力和满意度指标,因此需要广泛监控这些指标。

将LLM应用于软件开发

随着Transformer架构的出现,谷歌开始探索如何将大型语言模型(LLM)应用于软件开发。基于LLM的内联代码补全是AI在软件开发中最受欢迎的应用:使用代码本身作为训练数据是自然的应用方式。用户体验感觉自然,因为单词级自动补全已是IDE多年的核心功能。此外,可以使用一个粗略的影响衡量方法,例如由AI生成的新字符的百分比。因此,这一LLM应用成为首个部署的合理选择。

早期的博客介绍了谷歌如何通过代码补全提升用户体验及其影响测量。从那时起,企业环境中类似的快速增长也得以实现,软件工程师的接受率达到了37%,帮助完成了50%的代码字符。换句话说,现在代码中的字符有一半是由AI辅助完成的,而不是开发者手动输入的。虽然开发者仍需花时间审查建议,但他们有更多时间专注于代码设计。

关键改进

关键改进来自模型(更大的模型具有改进的编码能力,提供给模型的上下文构建的启发式方法,以及基于接受、拒绝和纠正的使用日志调整模型)和用户体验。这一循环对于从实际行为中学习,而不是从合成公式中学习至关重要。

谷歌利用多年来精心整理的跨多个工具的高质量内部软件工程活动日志。这些数据使谷歌能够表示细粒度的代码编辑、构建结果、解决构建问题的编辑、代码复制粘贴操作、修复粘贴代码、代码审查、解决审查问题的编辑以及代码提交到存储库的变更。训练数据是带有特定任务注释的代码对齐语料库。数据收集过程的设计、训练数据的形状以及基于这些数据训练的模型在DIDACT博客中进行了描述。谷歌继续利用这些强大的数据集与更新一代的基础模型进行探索。

下一个重大部署是解决代码审查评论(超过8%现在通过AI辅助完成)和自动适应周围上下文的粘贴代码(现在负责IDE中约2%的代码)。其他部署包括用自然语言指示IDE进行代码编辑和预测构建失败的修复。其他应用,例如预测代码可读性提示,遵循类似模式也是可能的。

学习成果

到目前为止,谷歌的工作教会了几件事:

  1. 用户体验的自然融合:取得最高影响的是自然融入用户工作流程的用户体验。在所有上述示例中,建议会呈现给用户,只需按一下Tab键或点击一下就可以进行下一步。需要用户记住触发功能的实验未能规模化。
  2. 平衡代码审查成本和增加值:观察到,随着AI建议的增多,代码作者越来越成为审查者,找到审查成本和增加值之间的平衡很重要。通常通过接受率目标来解决这一权衡。
  3. 快速迭代和在线A/B测试:快速迭代和在线A/B测试是关键,因为离线指标往往只是用户价值的粗略代理。通过在内部工具中展示AI功能,能够轻松发布和迭代,测量使用数据,并通过用户体验研究直接向用户询问他们的体验。
  4. 高质量数据的重要性:谷歌工程师在软件工具中的活动数据,包括与功能的互动数据,对于模型质量至关重要。
  5. 优化机会转化:观察到跨功能的优化机会转化,从机会(主要是用户活动,如下图漏斗顶部所示)到影响(应用AI辅助,如漏斗底部所示),同时通过用户体验和模型改进消除漏斗中间步骤的瓶颈。

展望未来

受到迄今成功的鼓舞,谷歌正在加倍努力,将最新的基础模型(Gemini系列)与开发者数据(如上所述的DIDACT的一部分)结合,推动现有和新的ML在谷歌软件工程中的应用。

在整个行业中,基于ML的代码补全为软件开发者提供了重大推动。虽然在代码生成方面仍有改进的机会,但预计下一波收益将来自更广泛的软件工程活动的ML辅助,例如测试、代码理解和代码维护;后者在企业环境中特别重要。这些机会为谷歌的持续工作提供了信息。谷歌还强调了两个行业趋势:

  1. 自然语言的人机交互:人机交互已转向自然语言作为常见模式,正在转向使用语言作为软件工程任务的界面以及开发者信息需求的入口,所有这些都集成在IDEs中。
  2. ML自动化大规模任务:从诊断问题到实施修复的大规模任务的ML自动化已开始显示出可行性。这些可能性由代理和工具使用的创新驱动,允许构建使用一个或多个LLM作为组件来完成更大任务的系统。

为了扩展上述成功并迈向下一代能力,从事该主题的实践者和研究人员社区将受益于共同基准的帮助,以推动该领域向实际工程任务发展。迄今为止,基准主要集中在代码生成(如HumanEval)。然而,在企业环境中,针对更广泛任务的基准可能特别有价值,例如代码迁移和生产调试。一些基准,例如用于错误解决的基准(如SWEBench),以及针对这些基准的原型(如来自Cognition AI)已经发布。谷歌鼓励社区共同提出更多基准,以涵盖更广泛的软件工程任务。

这篇关于谷歌AI助力软件工程的进展及未来展望的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1050669

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

客户案例:安全海外中继助力知名家电企业化解海外通邮困境

1、客户背景 广东格兰仕集团有限公司(以下简称“格兰仕”),成立于1978年,是中国家电行业的领军企业之一。作为全球最大的微波炉生产基地,格兰仕拥有多项国际领先的家电制造技术,连续多年位列中国家电出口前列。格兰仕不仅注重业务的全球拓展,更重视业务流程的高效与顺畅,以确保在国际舞台上的竞争力。 2、需求痛点 随着格兰仕全球化战略的深入实施,其海外业务快速增长,电子邮件成为了关键的沟通工具。

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

AI行业应用(不定期更新)

ChatPDF 可以让你上传一个 PDF 文件,然后针对这个 PDF 进行小结和提问。你可以把各种各样你要研究的分析报告交给它,快速获取到想要知道的信息。https://www.chatpdf.com/

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti