tensorflow使用DNN、CNN、RNN(lstm)分别实现识别mnist手写数字图片

本文主要是介绍tensorflow使用DNN、CNN、RNN(lstm)分别实现识别mnist手写数字图片,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、DNN结构实现mnist手写数字图片
import os
import struct
import numpy as np
import tensorflow as tf#数据加载函数
def load_mnist(path, kind='train'):"""load mnist dateArgs:path: date pathkind: train or testReturns:images and labels"""labels_path = os.path.join(path,'%s-labels.idx1-ubyte'% kind)   #标签数据images_path = os.path.join(path,'%s-images.idx3-ubyte'% kind)   #图像数据with open(labels_path, 'rb') as lbpath:magic, n = struct.unpack('>II',lbpath.read(8))labels = np.fromfile(lbpath,dtype=np.uint8)with open(images_path, 'rb') as imgpath:magic, num, rows, cols = struct.unpack('>IIII',imgpath.read(16))images = np.fromfile(imgpath,dtype=np.uint8).reshape(len(labels), 784)return images, labels#将label进行one-hot处理
def y_onehot(y):"""one-hot optionArgs:y: labelsReturns:one-hot labeleg:1->[0,1,0,0,0,0,0,0,0]"""n_class = 10y_labels = np.eye(n_class)[y]return y_labels#超参
Epoch=100
batch_size=256
learning_rate=0.05x=tf.placeholder(tf.float32, [None, 784])
y=tf.placeholder(tf.float32, [None, 10])
is_train = tf.placeholder(tf.bool)  #BatchNorm 参数
keep_prob = tf.placeholder(tf.float32)   #dropout参数W_fc1 = tf.Variable(tf.truncated_normal(shape=[784, 1024], stddev=0.1), name="W_fc1")
b_fc1 = tf.Variable(tf.constant(0.01, shape=[1024]), name="b_fc1")W_fc2 = tf.Variable(tf.truncated_normal(shape=[1024, 512], stddev=0.1), name="W_fc2")
b_fc2 = tf.Variable(tf.constant(0.01, shape=[512]), name="b_fc2")W_fc3 = tf.Variable(tf.truncated_normal(shape=[512, 10], stddev=0.1), name="W_fc3")
b_fc3 = tf.Variable(tf.constant(0.01, shape=[10]), name="b_fc3")def minist_dnn(x, is_train, keep_prob, W_fc1, b_fc1, W_fc2, b_fc2):layer1 = tf.add(tf.matmul(x, W_fc1), b_fc1)layer1_bn = tf.layers.batch_normalization(layer1, training=is_train)  #BN层layer1_relu = tf.nn.relu(layer1_bn)#一般添加了BN层就不添加dropout,添加了dropout就不添加BN,这一层只使用dropoutlayer2 = tf.add(tf.matmul(layer1_relu, W_fc2), b_fc2)layer2_relu = tf.nn.relu(layer2)layer2_drop = tf.nn.dropout(layer2_relu, keep_prob)   #dropout层layer3 = tf.add(tf.matmul(layer2_drop, W_fc3), b_fc3)pred = tf.nn.softmax(layer3)return predpred = minist_dnn(x, is_train, keep_prob, W_fc1, b_fc1, W_fc2, b_fc2)
loss = -tf.reduce_mean(y*tf.log(tf.clip_by_value(pred, 1e-8, 1)))
correct_prediction = tf.equal(tf.arg_max(y, 1), tf.arg_max(pred,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
train_op=optimizer.minimize(loss)init = tf.global_variables_initializer()
saver = tf.train.Saver(tf.global_variables())path = 'D:/data/mnist/'
X_train, y_train = load_mnist(path, kind='train')    #训练集
y_train_labels = y_onehot(y_train)with tf.Session() as sess:sess.run(init)total_batch = int(len(X_train)/batch_size)for step in range(Epoch):for i in range(1,total_batch):batch_x = X_train[(i-1)*batch_size: i*batch_size]batch_y = y_train_labels[(i-1)*batch_size: i*batch_size]sess.run(train_op,feed_dict={x:batch_x, y:batch_y, is_train:True, keep_prob:0.5})entropy ,acc = sess.run([loss, accuracy], feed_dict={x:X_train[0:1000], y:y_train_labels[0:1000], is_train:False, keep_prob:1})print('step{} loss=============>:{:.4f},   auc===========> {:.4f}'.format(step, entropy, acc) )print ("Optimization Finished!")

在这里插入图片描述

二、CNN结构实现mnist手写数字图片
import os
import struct
import numpy as np
import tensorflow as tftf.reset_default_graph()  #清空计算图#数据加载函数
def load_mnist(path, kind='train'):"""load mnist dateArgs:path: date pathkind: train or testReturns:images and labels"""labels_path = os.path.join(path,'%s-labels.idx1-ubyte'% kind)   #标签数据images_path = os.path.join(path,'%s-images.idx3-ubyte'% kind)   #图像数据with open(labels_path, 'rb') as lbpath:magic, n = struct.unpack('>II',lbpath.read(8))labels = np.fromfile(lbpath,dtype=np.uint8)with open(images_path, 'rb') as imgpath:magic, num, rows, cols = struct.unpack('>IIII',imgpath.read(16))images = np.fromfile(imgpath,dtype=np.uint8).reshape(len(labels), 784)return images, labels#将label进行one-hot处理
def y_onehot(y):"""one-hot optionArgs:y: labelsReturns:one-hot labeleg:1->[0,1,0,0,0,0,0,0,0]"""n_class = 10y_labels = np.eye(n_class)[y]return y_labels#超参
Epoch=100
batch_size=256
learning_rate=0.001x= tf.placeholder(tf.float32, [None, 784])  #x
y=tf.placeholder(tf.float32, [None, 10])  #y
keep_prob = tf.placeholder(tf.float32)   #用于空值dropout概率def mnist_cnn(x, keep_prob):x_image=tf.reshape(x, [-1,28,28,1])  #将数据变为28*28形状#第一层卷积with tf.variable_scope("conv_pool1"):W_conv1 = tf.get_variable("weights",[5,5,1,32], initializer = tf.truncated_normal_initializer(stddev=0.1))   #第一层卷积参数,fileter尺寸为5*5,输入通道为1,输出通道为32b_conv1 = tf.get_variable("bias",[32], initializer = tf.constant_initializer(0.01))   #第一层偏置项,输出的每一个通道通会加一个bias,总共加32个h_conv1=tf.nn.conv2d(x_image, filter= W_conv1, strides=[1,1,1,1], padding="SAME")   #第一层卷积,stride为移动步长h_conv1_relu = tf.nn.relu(h_conv1+b_conv1)  #激活函数,注意tf.nn.conv2d不带激活函数,tf.layers.conv2d参数可以指定激活函数h_pooling1 = tf.nn.max_pool(h_conv1_relu, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')  #ksize为pooling核大小,pooling后变为(?, 14, 14, 32)#第二层卷积with tf.variable_scope("conv_pool2"):W_conv2 = tf.get_variable("weights",[5,5,32,64], initializer = tf.truncated_normal_initializer(stddev=0.1))   #第一层卷积参数,fileter尺寸为5*5,输入通道为1,输出通道为32b_conv2 = tf.get_variable("bias",[64], initializer = tf.constant_initializer(0.01))   #第一层偏置项,输出的每一个通道通会加一个bias,总共加32个h_conv2=tf.nn.conv2d(h_pooling1, filter= W_conv2, strides=[1,1,1,1], padding="SAME")   #第一层卷积,stride为移动步长h_conv2_relu = tf.nn.relu(h_conv2+b_conv2)  #激活函数,注意tf.nn.conv2d不带激活函数,tf.layers.conv2d参数可以指定激活函数h_pooling2 = tf.nn.max_pool(h_conv2_relu, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')  #ksize为pooling核大小,pooling后变为(?, 14, 14, 32)pool_shape = h_pooling2.get_shape().as_list()   #获得h_pooling2的维度,为[batch_size, wide, height, channel]h_pooling2_flat = tf.reshape(h_pooling2, [-1, pool_shape[1]*pool_shape[2]*pool_shape[3]])  #对pooling2一维展开#全连接with tf.variable_scope("fc1"):W_fc1 = tf.get_variable("weights",[pool_shape[1]*pool_shape[2]*pool_shape[3], 1024], initializer = tf.truncated_normal_initializer(stddev=0.1))   #全连接层权重,因为经过两层pooling,图片由28*28变为14*14,再变为7*7, 所以输入神经元为7*7*64b_fc1 = tf.get_variable("bias",[1024], initializer = tf.constant_initializer(0.01))   #h_pooling2 = tf.layers.flatten(h_pooling2)  #对pooling2一维展开fc1 = tf.add(tf.matmul(h_pooling2_flat, W_fc1), b_fc1) #第一层全连接fc1_relu = tf.nn.relu(fc1)fc1_drop = tf.nn.dropout(fc1_relu, keep_prob)   #dropout层#输出层with tf.variable_scope("output"):W_fc2 = tf.get_variable("weights",[1024, 10], initializer = tf.truncated_normal_initializer(stddev=0.1))    #全连接层权重,因为最终判断为10维,所以最终神经元为10个b_fc2 = tf.get_variable("bias",[10], initializer = tf.constant_initializer(0.01)) output = tf.add(tf.matmul(fc1_drop, W_fc2), b_fc2)   #第二层全连接pred = tf.nn.softmax(output)return predpred = mnist_cnn(x, keep_prob)  #带入函数
loss = -tf.reduce_mean(y*tf.log(tf.clip_by_value(pred,1e-11,1.0)))
correct_prediction = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))   #判断预测准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))     #准确率#可以加正则化损失
#loss = loss+ 0.001*tf.nn.l2_loss(W_fc1)
#optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate)
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)  #用梯度下降求解
train_op=optimizer.minimize(loss)init = tf.global_variables_initializer()
saver = tf.train.Saver(tf.global_variables())
#saver = tf.compat.v1.train.Saver(tf.compat.v1.global_variables())#with tf.Session() as sess:
#    print(accuracy)path = 'D:/data/mnist/'
X_train, y_train = load_mnist(path, kind='train')    #训练集
y_train_labels = y_onehot(y_train)with tf.Session() as sess:sess.run(init)total_batch = int(len(X_train)/batch_size)for step in range(Epoch):for i in range(1,total_batch):batch_x = X_train[(i-1)*batch_size: i*batch_size]batch_y = y_train_labels[(i-1)*batch_size: i*batch_size]sess.run(train_op,feed_dict={x:batch_x, y:batch_y, keep_prob:0.5})#saver.save(sess, 'D:/data/mnist/cnn_mnist.module', global_step=step)  #保存模型entropy ,acc = sess.run([loss, accuracy], feed_dict={x:X_train[0:1000], y:y_train_labels[0:1000], keep_prob:1})print('step{} loss=============>:{:.4f},   auc===========> {:.4f}'.format(step, entropy, acc) )print ("Optimization Finished!")

在这里插入图片描述

三、LSTM结构实现mnist手写数字图片
import os
import struct
import numpy as np
import tensorflow as tftf.reset_default_graph()  #清空计算图#数据加载函数
def load_mnist(path, kind='train'):"""load mnist dateArgs:path: date pathkind: train or testReturns:images and labels"""labels_path = os.path.join(path,'%s-labels.idx1-ubyte'% kind)   #标签数据images_path = os.path.join(path,'%s-images.idx3-ubyte'% kind)   #图像数据with open(labels_path, 'rb') as lbpath:magic, n = struct.unpack('>II',lbpath.read(8))labels = np.fromfile(lbpath,dtype=np.uint8)with open(images_path, 'rb') as imgpath:magic, num, rows, cols = struct.unpack('>IIII',imgpath.read(16))images = np.fromfile(imgpath,dtype=np.uint8).reshape(len(labels), 784)return images, labels#将label进行one-hot处理
def y_onehot(y):"""one-hot optionArgs:y: labelsReturns:one-hot labeleg:1->[0,1,0,0,0,0,0,0,0]"""n_class = 10y_labels = np.eye(n_class)[y]return y_labels#超参
Epoch=100
learning_rate=0.05
timestep=28   #特征序列长度,对应隐藏层ht个数
num_input=28   #特征维度,共28维。图像每一行可以看做一个维度特征,共28维
lstm_hidden_size=64  #lstm隐藏层神经元个数
num_of_layers = 2  #lstm的层数x= tf.placeholder(tf.float32, [None, 784])  #x
y=tf.placeholder(tf.float32, [None, 10])  #y
lstm_keep_prob = tf.placeholder(tf.float32)
keep_prob = tf.placeholder(tf.float32)   #用于空值dropout概率
batch_size = tf.placeholder(tf.int32, [])   #一个批次数据,训练集是使用256,预测时使用1000,[]表示是一个Scalardef mnist_lstm(x, lstm_keep_prob, keep_prob, batch_size):x_image = tf.reshape(x, [-1,timestep, num_input])  #将数据序列长度*特征维度with tf.variable_scope("lstmlayer"):#创建lstm结构,ht神经元个数为64,,可推测出,一个门的参数个数为64*(64+28)+64, (64+28)表示ht-1与xt拼接的维度#为lstm创建dropout,有两个参数,训练时,input_keep_prob,一般设置为1,out_keep_prob一般设置为0.5#创建num_of_layers层lstm,不能用[lstm]*N,否则每层lstm参数会共享#注意lstm,dropout和多层MultiRNNCell必须放在一起调用,否则会出现维度错误stacked_lstm = tf.nn.rnn_cell.MultiRNNCell([tf.nn.rnn_cell.DropoutWrapper(tf.nn.rnn_cell.BasicLSTMCell(lstm_hidden_size), input_keep_prob=1, output_keep_prob =lstm_keep_prob ) for _ in range(num_of_layers)]) init_state = stacked_lstm.zero_state(batch_size, dtype=tf.float32)#计算前项lstm层的输出, 两个输出,一个记录ht,一个记录ctlstm_outputs, _ = tf.nn.dynamic_rnn(stacked_lstm, x_image, initial_state=init_state, dtype=tf.float32)#我们支取最后一个输出状态ht进行下一步的预测lstm_output = lstm_outputs[:,-1,:]with tf.variable_scope("fc1"):W_fc1 = tf.get_variable('weight', shape=[lstm_hidden_size, 10], initializer = tf.truncated_normal_initializer(stddev=0.1), dtype=tf.float32)b_fc1 = tf.get_variable('bias', shape=[10], initializer = tf.constant_initializer(0.1), dtype=tf.float32)output = tf.add(tf.matmul(lstm_output, W_fc1), b_fc1) #第一层全连接pred = tf.nn.softmax(output)return predpred = mnist_lstm(x, lstm_keep_prob, keep_prob, batch_size)  #带入函数
loss = -tf.reduce_mean(y*tf.log(tf.clip_by_value(pred,1e-11,1.0)))
correct_prediction = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))   #判断预测准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))     #准确率#可以加正则化损失
#loss = loss+ 0.001*tf.nn.l2_loss(W_fc1)
#optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate)
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)  #用梯度下降求解
train_op=optimizer.minimize(loss)init = tf.global_variables_initializer()
#saver = tf.train.Saver(tf.global_variables())path = 'D:/data/mnist/'
X_train, y_train = load_mnist(path, kind='train')    #训练集
y_train_labels = y_onehot(y_train)with tf.Session() as sess:sess.run(init)total_batch = int(len(X_train)/256)for step in range(Epoch):for i in range(1,total_batch):batch_x = X_train[(i-1)*256: i*256]batch_y = y_train_labels[(i-1)*256: i*256]sess.run(train_op,feed_dict={x:batch_x, y:batch_y, lstm_keep_prob:0.5, keep_prob:0.5, batch_size:256})#saver.save(sess, 'D:/data/mnist/cnn_mnist.module', global_step=step)  #保存模型entropy ,acc = sess.run([loss, accuracy], feed_dict={x:X_train[0:1000], y:y_train_labels[0:1000], lstm_keep_prob:1, keep_prob:1, batch_size:1000})print('step{} loss=============>:{:.4f},   auc===========> {:.4f}'.format(step, entropy, acc) )print ("Optimization Finished!")

在这里插入图片描述

这篇关于tensorflow使用DNN、CNN、RNN(lstm)分别实现识别mnist手写数字图片的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1048741

相关文章

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

prometheus如何使用pushgateway监控网路丢包

《prometheus如何使用pushgateway监控网路丢包》:本文主要介绍prometheus如何使用pushgateway监控网路丢包问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录监控网路丢包脚本数据图表总结监控网路丢包脚本[root@gtcq-gt-monitor-prome

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr