ShuffleNet算法详解

2024-06-10 11:48
文章标签 算法 详解 shufflenet

本文主要是介绍ShuffleNet算法详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原博文:

论文:ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices
论文链接:https://arxiv.org/abs/1707.01083

算法详解:
ShuffleNet是Face++的一篇关于降低深度网络计算量的论文,号称是可以在移动设备上运行的深度网络。
这篇文章可以和MobileNet、Xception和ResNeXt结合来看,因为有类似的思想。卷积的group操作从AlexNet就已经有了,当时主要是解决模型在双GPU上的训练。ResNeXt借鉴了这种group操作改进了原本的ResNet。MobileNet则是采用了depthwise separable convolution代替传统的卷积操作,在几乎不影响准确率的前提下大大降低计算量,具体可以参考MobileNets-深度学习模型的加速。Xception主要也是采用depthwise separable convolution改进Inception v3的结构。

该文章主要采用channel shuffle、pointwise group convolutions和depthwise separable convolution来修改原来的ResNet单元,接下来依次讲解。

channel shuffle的思想可以看下面的Figure 1。这就要先从group操作说起,一般卷积操作中比如输入feature map的数量是N,该卷积层的filter数量是M,那么M个filter中的每一个filter都要和N个feature map的某个区域做卷积,然后相加作为一个卷积的结果。假设你引入group操作,设group为g,那么N个输入feature map就被分成g个group,M个filter就被分成g个group,然后在做卷积操作的时候,第一个group的M/g个filter中的每一个都和第一个group的N/g个输入feature map做卷积得到结果,第二个group同理,直到最后一个group,如Figure1(a)。不同的颜色代表不同的group,图中有三个group。这种操作可以大大减少计算量,因为你每个filter不再是和输入的全部feature map做卷积,而是和一个group的feature map做卷积。但是如果多个group操作叠加在一起,如Figure1(a)的两个卷积层都有group操作,显然就会产生边界效应,什么意思呢?就是某个输出channel仅仅来自输入channel的一小部分。这样肯定是不行的的,学出来的特征会非常局限。于是就有了channel shuffle来解决这个问题,先看Figure1(b),在进行GConv2之前,对其输入feature map做一个分配,也就是每个group分成几个subgroup,然后将不同group的subgroup作为GConv2的一个group的输入,使得GConv2的每一个group都能卷积输入的所有group的feature map,这和Figure1(c)的channel shuffle的思想是一样的。

这里写图片描述

pointwise group convolutions,其实就是带group的卷积核为1*1的卷积,也就是说pointwise convolution是卷积核为1*1的卷积。在ResNeXt中主要是对3*3的卷积做group操作,但是在ShuffleNet中,作者是对1*1的卷积做group的操作,因为作者认为1*1的卷积操作的计算量不可忽视。可以看Figure2(b)中的第一个1*1卷积是GConv,表示group convolution。Figure2(a)是ResNet中的bottleneck unit,不过将原来的3*3 Conv改成3*3 DWConv,作者的ShuffleNet主要也是在这基础上做改动。首先用带group的1*1卷积代替原来的1*1卷积,同时跟一个channel shuffle操作,这个前面也介绍过了。然后是3*3 DWConv表示depthwise separable convolution。depthwise separable convolution可以参考MobileNet,下面贴出depthwise separable convolution的示意图。Figure2(c)添加了一个Average pooling和设置了stride=2,另外原来Resnet最后是一个Add操作,也就是元素值相加,而在(c)中是采用concat的操作,也就是按channel合并,类似googleNet的Inception操作。

这里写图片描述

下图就是depthwise separable convolution的示意图,其实就是将传统的卷积操作分成两步,假设原来是3*3的卷积,那么depthwise separable convolution就是先用M个3*3卷积核一对一卷积输入的M个feature map,不求和,生成M个结果,然后用N个1*1的卷积核正常卷积前面生成的M个结果,求和,最后得到N个结果。具体可以看另一篇博文:MobileNets-深度学习模型的加速。

这里写图片描述

Table 1是ShuffleNet的结构表,基本上和ResNet是一样的,也是分成几个stage(ResNet中有4个stage,这里只有3个),然后在每个stage中用ShuffleNet unit代替原来的Residual block,这也就是ShuffleNet算法的核心。这个表是在限定complexity的情况下,通过改变group(g)的数量来改变output channel的数量,更多的output channel一般而言可以提取更多的特征。

这里写图片描述

实验结果:
Table2表示不同大小的ShuffleNet在不同group数量情况下的分类准确率比较。ShuffleNet s*表示将ShuffleNet 1*的filter个数变成s倍。arch2表示将原来网络结构中的Stage3的两个uint移除,同时在保持复杂度的前提下widen each feature map。Table2的一个重要结论是group个数的线性增长并不会带来分类准确率的线性增长。但是发现ShuffleNet对于小的网络效果更明显,因为一般小的网络的channel个数都不多,在限定计算资源的前提下,ShuffleNet可以使用更多的feature map。

这里写图片描述

Table3表示channel shuffle的重要性。

这里写图片描述

Table4是几个流行的分类网络的分类准确率对比。Table5是ShuffleNet和MobileNet的对比,效果还可以。

这里写图片描述

总结:
ShuffleNet的核心就是用pointwise group convolution,channel shuffle和depthwise separable convolution代替ResNet block的相应层构成了ShuffleNet uint,达到了减少计算量和提高准确率的目的。channel shuffle解决了多个group convolution叠加出现的边界效应,pointwise group convolution和depthwise separable convolution主要减少了计算量。


这篇关于ShuffleNet算法详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1048080

相关文章

C语言字符函数和字符串函数示例详解

《C语言字符函数和字符串函数示例详解》本文详细介绍了C语言中字符分类函数、字符转换函数及字符串操作函数的使用方法,并通过示例代码展示了如何实现这些功能,通过这些内容,读者可以深入理解并掌握C语言中的字... 目录一、字符分类函数二、字符转换函数三、strlen的使用和模拟实现3.1strlen函数3.2st

Spring Boot拦截器Interceptor与过滤器Filter详细教程(示例详解)

《SpringBoot拦截器Interceptor与过滤器Filter详细教程(示例详解)》本文详细介绍了SpringBoot中的拦截器(Interceptor)和过滤器(Filter),包括它们的... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)详细教程1. 概述1

Go语言中最便捷的http请求包resty的使用详解

《Go语言中最便捷的http请求包resty的使用详解》go语言虽然自身就有net/http包,但是说实话用起来没那么好用,resty包是go语言中一个非常受欢迎的http请求处理包,下面我们一起来学... 目录安装一、一个简单的get二、带查询参数三、设置请求头、body四、设置表单数据五、处理响应六、超

详解如何使用Python提取视频文件中的音频

《详解如何使用Python提取视频文件中的音频》在多媒体处理中,有时我们需要从视频文件中提取音频,本文为大家整理了几种使用Python编程语言提取视频文件中的音频的方法,大家可以根据需要进行选择... 目录引言代码部分方法扩展引言在多媒体处理中,有时我们需要从视频文件中提取音频,以便进一步处理或分析。本文

SpringIoC与SpringDI详解

《SpringIoC与SpringDI详解》本文介绍了Spring框架中的IoC(控制反转)和DI(依赖注入)概念,以及如何在Spring中使用这些概念来管理对象和依赖关系,感兴趣的朋友一起看看吧... 目录一、IoC与DI1.1 IoC1.2 DI二、IoC与DI的使用三、IoC详解3.1 Bean的存储

Spring Cloud之注册中心Nacos的使用详解

《SpringCloud之注册中心Nacos的使用详解》本文介绍SpringCloudAlibaba中的Nacos组件,对比了Nacos与Eureka的区别,展示了如何在项目中引入SpringClo... 目录Naacos服务注册/服务发现引⼊Spring Cloud Alibaba依赖引入Naco编程s依

C语言中的浮点数存储详解

《C语言中的浮点数存储详解》:本文主要介绍C语言中的浮点数存储详解,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、首先明确一个概念2、接下来,讲解C语言中浮点型数存储的规则2.1、可以将上述公式分为两部分来看2.2、问:十进制小数0.5该如何存储?2.3 浮点

大数据spark3.5安装部署之local模式详解

《大数据spark3.5安装部署之local模式详解》本文介绍了如何在本地模式下安装和配置Spark,并展示了如何使用SparkShell进行基本的数据处理操作,同时,还介绍了如何通过Spark-su... 目录下载上传解压配置jdk解压配置环境变量启动查看交互操作命令行提交应用spark,一个数据处理框架

MySQL中COALESCE函数示例详解

《MySQL中COALESCE函数示例详解》COALESCE是一个功能强大且常用的SQL函数,主要用来处理NULL值和实现灵活的值选择策略,能够使查询逻辑更清晰、简洁,:本文主要介绍MySQL中C... 目录语法示例1. 替换 NULL 值2. 用于字段默认值3. 多列优先级4. 结合聚合函数注意事项总结C

Java实现数据库图片上传功能详解

《Java实现数据库图片上传功能详解》这篇文章主要为大家详细介绍了如何使用Java实现数据库图片上传功能,包含从数据库拿图片传递前端渲染,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、前言2、数据库搭建&nbsChina编程p; 3、后端实现将图片存储进数据库4、后端实现从数据库取出图片给前端5、前端拿到