3.大模型高效微调PEFT

2024-06-10 08:12
文章标签 高效 模型 微调 peft

本文主要是介绍3.大模型高效微调PEFT,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大模型高效微调(PEFT)技术

预训练模型的背景

  • 预训练与微调:传统的微调方法通常涉及对整个预训练模型的参数进行再训练,以适应特定任务。这虽然有效,但计算成本高,且需要大量的标记数据。
  • 模型结构:像BERT或GPT这样的模型通常包含数亿甚至数十亿个参数,构成一个深层次的Transformer网络。

Before PEFT: in-context learning (prompt)

请添加图片描述

Before PEFT: Hard Prompt

Before PEFT: Hard Prompt for text2image (Made by SD XL)

Before PEFT: Hard Prompt for text2image (Made by SD XL)

Before PEFT: Hard Prompt for text2image (Made by Midjourney)

Before PEFT: Hard Prompt for text2image (Made by DALL·E 3)

Before PEFT: Prompt Template for AutoGPT (Made by LangChain)
请添加图片描述

有更好的方法吗?

请添加图片描述

请添加图片描述

请添加图片描述

Adapter Tuning: 开启大模型PEFT (2019)

Adapter Tuning 是一种相对较新的神经网络微调方法,特别适用于大型预训练模型(如BERT、GPT等)。它在保持预训练模型结构和参数大部分不变的前提下,通过引入额外的小型网络模块(称为"adapters")来调整模型以适应特定的下游任务。

请添加图片描述

Adapter Tuning 的核心原理

  • Adapter模块:Adapter Tuning 在模型的每个层(或特定层)中插入小型的神经网络模块(Adapters)。这些模块相对简单,参数量少。
  • 参数固定:除了这些Adapter模块外,模型的其他所有预训练参数都保持固定不变。

请添加图片描述

Adapter Tuning 的实现

  • 训练Adapter:在微调过程中,只有Adapter模块的参数被更新。这些模块学习从预训练模型的固定表示中提取对特定任务有用的信息。
  • 灵活性:由于Adapters相对较小,它们可以快速地针对不同的任务进行训练和调整。
  • 效率:与传统的全模型微调相比,Adapter Tuning 需要更少的计算资源和训练时间。

应用和优势

  • 任务特定调整:Adapter Tuning 使得模型能够针对特定任务进行有效的调整,而不需要重新训练整个大型模型。
  • 资源节约:由于只训练Adapters,这种方法

这篇关于3.大模型高效微调PEFT的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1047624

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

高效+灵活,万博智云全球发布AWS无代理跨云容灾方案!

摘要 近日,万博智云推出了基于AWS的无代理跨云容灾解决方案,并与拉丁美洲,中东,亚洲的合作伙伴面向全球开展了联合发布。这一方案以AWS应用环境为基础,将HyperBDR平台的高效、灵活和成本效益优势与无代理功能相结合,为全球企业带来实现了更便捷、经济的数据保护。 一、全球联合发布 9月2日,万博智云CEO Michael Wong在线上平台发布AWS无代理跨云容灾解决方案的阐述视频,介绍了

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

高效录音转文字:2024年四大工具精选!

在快节奏的工作生活中,能够快速将录音转换成文字是一项非常实用的能力。特别是在需要记录会议纪要、讲座内容或者是采访素材的时候,一款优秀的在线录音转文字工具能派上大用场。以下推荐几个好用的录音转文字工具! 365在线转文字 直达链接:https://www.pdf365.cn/ 365在线转文字是一款提供在线录音转文字服务的工具,它以其高效、便捷的特点受到用户的青睐。用户无需下载安装任何软件,只

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言