3.大模型高效微调PEFT

2024-06-10 08:12
文章标签 高效 模型 微调 peft

本文主要是介绍3.大模型高效微调PEFT,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大模型高效微调(PEFT)技术

预训练模型的背景

  • 预训练与微调:传统的微调方法通常涉及对整个预训练模型的参数进行再训练,以适应特定任务。这虽然有效,但计算成本高,且需要大量的标记数据。
  • 模型结构:像BERT或GPT这样的模型通常包含数亿甚至数十亿个参数,构成一个深层次的Transformer网络。

Before PEFT: in-context learning (prompt)

请添加图片描述

Before PEFT: Hard Prompt

Before PEFT: Hard Prompt for text2image (Made by SD XL)

Before PEFT: Hard Prompt for text2image (Made by SD XL)

Before PEFT: Hard Prompt for text2image (Made by Midjourney)

Before PEFT: Hard Prompt for text2image (Made by DALL·E 3)

Before PEFT: Prompt Template for AutoGPT (Made by LangChain)
请添加图片描述

有更好的方法吗?

请添加图片描述

请添加图片描述

请添加图片描述

Adapter Tuning: 开启大模型PEFT (2019)

Adapter Tuning 是一种相对较新的神经网络微调方法,特别适用于大型预训练模型(如BERT、GPT等)。它在保持预训练模型结构和参数大部分不变的前提下,通过引入额外的小型网络模块(称为"adapters")来调整模型以适应特定的下游任务。

请添加图片描述

Adapter Tuning 的核心原理

  • Adapter模块:Adapter Tuning 在模型的每个层(或特定层)中插入小型的神经网络模块(Adapters)。这些模块相对简单,参数量少。
  • 参数固定:除了这些Adapter模块外,模型的其他所有预训练参数都保持固定不变。

请添加图片描述

Adapter Tuning 的实现

  • 训练Adapter:在微调过程中,只有Adapter模块的参数被更新。这些模块学习从预训练模型的固定表示中提取对特定任务有用的信息。
  • 灵活性:由于Adapters相对较小,它们可以快速地针对不同的任务进行训练和调整。
  • 效率:与传统的全模型微调相比,Adapter Tuning 需要更少的计算资源和训练时间。

应用和优势

  • 任务特定调整:Adapter Tuning 使得模型能够针对特定任务进行有效的调整,而不需要重新训练整个大型模型。
  • 资源节约:由于只训练Adapters,这种方法

这篇关于3.大模型高效微调PEFT的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1047624

相关文章

如何高效移除C++关联容器中的元素

《如何高效移除C++关联容器中的元素》关联容器和顺序容器有着很大不同,关联容器中的元素是按照关键字来保存和访问的,而顺序容器中的元素是按它们在容器中的位置来顺序保存和访问的,本文介绍了如何高效移除C+... 目录一、简介二、移除给定位置的元素三、移除与特定键值等价的元素四、移除满足特android定条件的元

基于Python实现高效PPT转图片工具

《基于Python实现高效PPT转图片工具》在日常工作中,PPT是我们常用的演示工具,但有时候我们需要将PPT的内容提取为图片格式以便于展示或保存,所以本文将用Python实现PPT转PNG工具,希望... 目录1. 概述2. 功能使用2.1 安装依赖2.2 使用步骤2.3 代码实现2.4 GUI界面3.效

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Java图片压缩三种高效压缩方案详细解析

《Java图片压缩三种高效压缩方案详细解析》图片压缩通常涉及减少图片的尺寸缩放、调整图片的质量(针对JPEG、PNG等)、使用特定的算法来减少图片的数据量等,:本文主要介绍Java图片压缩三种高效... 目录一、基于OpenCV的智能尺寸压缩技术亮点:适用场景:二、JPEG质量参数压缩关键技术:压缩效果对比

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

SpringBoot使用OkHttp完成高效网络请求详解

《SpringBoot使用OkHttp完成高效网络请求详解》OkHttp是一个高效的HTTP客户端,支持同步和异步请求,且具备自动处理cookie、缓存和连接池等高级功能,下面我们来看看SpringB... 目录一、OkHttp 简介二、在 Spring Boot 中集成 OkHttp三、封装 OkHttp

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解