【Python机器学习】PCA——特征提取(2)

2024-06-10 08:12

本文主要是介绍【Python机器学习】PCA——特征提取(2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

上一篇写过了用单一最近邻分类器训练后的精度只有0.22.

现在用PCA。想要度量人脸的相似度,计算原始像素空间中的距离是一种相当糟糕的方法。用像素表示来比较两张图像时,我们比较的是每个像素的灰度值与另一张图像对应位置的像素灰度值。这种表示与人们对人脸图像的解释方式有很大不同,使用这种原始表示很难获取到面部特征。例如,如果使用像素距离,那么将人脸向右移动一个像素将发生巨大变化,得到一个完全不同的表示。我们希望,使用沿着主成分方向的距离可以提高精度。这里我们启用PCA的白化选项,它将主成分缩放到相同的尺度提高精度。变换后的结果与使用StandardScaler相同。白化不仅对应旋转数据,还对应于缩放数据时期形状是圆形而不是椭圆形:

mglearn.plots.plot_pca_whitening()
plt.show()

我们对训练数据拟合PCA对象,并提取前100个主成分,然后对训练数据和测试数据进行变换。

pca=PCA(n_components=100,whiten=True,random_state=0).fit(X_train)
X_train_pca=pca.transform(X_train)
X_test_pca=pca.transform(X_test)print('X_train_pca.shape:{}'.format(X_train_pca.shape))

新数据有100个特征,即前100个主成分。现在,对新表示使用单一最近邻分类器来将新图像分类:

knn=KNeighborsClassifier(n_neighbors=1)
knn.fit(X_train_pca,y_train)
print('test set accuracy:{:.2f}'.format(knn.score(X_test_pca,y_test)))

可以看到精度有显著提升。这证实了我们的直觉,即主成分可能提供了一种更好的数据表示。

对于图像数据,我们还很容易地将找到的主成分可视化。成分对应于输入空间里的方向。这里的输入空间是87*65像素的灰度像素,所以这个空间中的方向也是87*65像素的灰度图像。

先看一下前几个主成分:


print('pca.components_.shape:{}'.format(pca.components_.shape))


fig,axes=plt.subplots(3,5,figsize=(15,12),subplot_kw={'xticks':(),'yticks':()})
for i,(components,ax) in enumerate(zip(pca.components_,axes.ravel())):ax.imshow(components.reshape(image_shape),cmap='viridis')ax.set_title('{}.components'.format((i+1)))
plt.show()

虽然我们肯定无法理解这些成分的所有内容,但可以猜测一些主成分捕捉到了人脸图像的哪些方面。第一个主成分似乎主要编码的是人脸与背景 的对比,第二个主成分编码的是人脸左半部分和右半部分的明暗程度差异,如此等等。虽然这种表示比原始像素值的语义稍强,但它仍与人们感知人脸的方式相去甚远。由于PCA模型是基于像素的,因此人脸的相对位置和明暗程度都对两张图像在像素表示中的相似程度有很大影响。但人脸的相对位置和明暗程度可能并不是人们首先感知的内容。在要求人们评价人脸的相似度时,它们更可能会使用年龄、性别、表情、发型等属性,而这些属性很难从像素强度中推断出来。重要的是要记住,算法对数据(特别是视觉数据)的解释通常与人类的解释方式不同。

回到PCA的具体案例。我们对PCA变换的介绍是:先旋转数据,然后删除方差较小的成分。另一种有用的解释是:尝试找到一些数字(PCA旋转后的新特征值),使我们可以将测试点表示为主成分的加权求和。

我们还可以用另一种方法来理解PCA模型,就是仅使用一些成分对原始数据进行重建。我们可以对人脸做类似的变换,将数据酱味道只包含一些主成分,然后反向旋转到原始空间。回到原始特征空间可以通过inverse_transform方法来实现。

分别利用10、50、100、500个成分对一些人脸进行重建并将其可视化:


mglearn.plots.plot_pca_faces(X_train,X_test,image_shape)
plt.show()

从结果上可以看到,在仅使用10个主成分时,进捕捉到图片的基本特点,比如人脸方向和明暗程度。随着使用的主成分越来越多,图像中也保留了越来越多的细节。如果使用的成分个数与像素个数相同,意味着我们旋转后不会丢弃任何信息,可以完美重建图像。

还可以尝试用PCA的前两个主成分,将数据集中所有人脸在散点图中可视化,其类别在图中给出,这与我们对cancer数据集所做的类似:


mglearn.discrete_scatter(X_train_pca[:,0],X_train_pca[:,1],y_train)
plt.xlabel('first')
plt.ylabel('second')
plt.show()

这篇关于【Python机器学习】PCA——特征提取(2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1047620

相关文章

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很