解锁ChatGPT:从GPT-2实践入手解密ChatGPT

2024-06-10 06:52

本文主要是介绍解锁ChatGPT:从GPT-2实践入手解密ChatGPT,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

⭐️我叫忆_恒心,一名喜欢书写博客的研究生👨‍🎓。
如果觉得本文能帮到您,麻烦点个赞👍呗!

近期会不断在专栏里进行更新讲解博客~~~
有什么问题的小伙伴 欢迎留言提问欧,喜欢的小伙伴给个三连支持一下呗。👍⭐️❤️
📂Qt5.9专栏定期更新Qt的一些项目Demo
📂项目与比赛专栏定期更新比赛的一些心得面试项目常被问到的知识点。

一、ChatGPT架构概览

随着自然语言处理(NLP)的快速进展,由OpenAI推出的ChatGPT引领了对话型AI的新趋势。基于GPT架构,这一AI不仅改变了公众与AI的互动模式,还引起了广泛的技术内核探讨。本部分将详细分析ChatGPT的原理,从模型结构、训练方式到应用实践等方面进行阐述。
GPT模型概述
GPT基于Transformer架构,初期在大量文本数据上进行预训练,掌握语言模式后在特定任务上细化调优。其预训练是一种无监督学习,旨在通过预测被遮蔽的文本来理解语言结构。

ChatGPT的原理持续迭代,现行的GPT-4和原始模型都基于OpenAI团队的《Generative Pre-Training》论文。

在这里插入图片描述

简单地来说,堆叠多个Transformer模型,不断微调,因此在早几年的,自然语言处理时,GPT论文的复现难度比较大,且成本非常高

说到这就不得不提一下Transformer架构。
Transformer架构
这个思路来源于《attention is all you need》,这论文现在的饮用量已经高达了12W了,非常推荐大家去读一下原文。
在这里插入图片描述
Transformer模型是由多个编码器(Encoder)和解码器(Decoder)层堆叠而成,是目前自然语言处理技术的核心。其核心技术是自注意力机制(Self-Attention Mechanism),允许模型在处理输入的每个单词时,考虑到句子中的其他单词,从而更好地理解语境。
在这里插入图片描述
简单来说,这篇论文主要介绍下面的内容:

“Attention Is All You Need”,作者是 Ashish Vaswani 等人。该论文提出了一种新的简单网络架构——Transformer,它完全基于注意力机制,摒弃了递归和卷积。在两个机器翻译任务上的实验表明,这些模型在质量上更优越,同时更具并行性,训练所需的时间也显著减少。

二、模型训练与微调

ChatGPT目前并没有进行开源,但是如果从深度解析原来来看,我们完全可以通过GPT2.0 来完成学习。
GPT-2的预训练阶段,模型使用一个非常大的数据集进行训练,这些数据集包括从网上收集的8百万个网页的文本。预训练的目标是让模型学会语言的统计规律,通过预测给定文本片段中的下一个单词来进行。
GPT2

2.1 预训练过程:

  1. 数据收集: 搜集各类文本数据如书籍、网页、新闻。
  2. 训练目标: 预测文本中的下一个词汇。

2.2 微调过程:

  1. 特定数据: 使用对话型数据集进行优化,提升模型的对话能力。
  2. 调整目标: 提高生成对话的连贯性和相关性。

要撰写一个关于OpenAI GPT-2模型的技术博客,你可以从以下几个方面入手:

  1. 模型概述:介绍GPT-2的基本架构和其在自然语言处理中的应用,强调其使用变换器(Transformer)模型的重要性。

  2. 模型版本和参数:解释不同的模型版本(如124M、355M、774M和1.5B),每个版本的参数和层数的差异。

  3. 关键代码讲解

    • 模型下载代码:讲解如何使用download_model.py脚本下载不同大小的模型文件。
      import os
      os.system("python download_model.py 124M")  # 下载124M模型
      
    • 生成文本示例代码:展示如何使用generate_unconditional_samples.py生成文本。
      os.system("python src/generate_unconditional_samples.py --model_name='124M' --nsamples=1 --length=100")
      
  4. 实际应用案例:描述如何将GPT-2应用于聊天机器人、内容生成等场景。

2.3 代码示例(伪代码):

import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel, AdamW# 加载预训练模型和分词器
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel.from_pretrained('gpt2')
optimizer = AdamW(model.parameters(), lr=5e-5)# 示例文本输入
input_ids = tokenizer.encode("Sample text input:", return_tensors='pt')# 微调模型
for _ in range(100):outputs = model(input_ids, labels=input_ids)loss = outputs.lossloss.backward()optimizer.step()optimizer.zero_grad()

三、实际应用与性能优化

在这里插入图片描述

在实际应用中,ChatGPT可服务于多种业务场景,如自动客服、内容推荐、自动编程辅助等。针对具体任务,可能需要通过模型剪枝来降低模型大小,或使用量化技术减少计算资源的消耗,从而提高响应速度和处理效率。这些技术帮助部署在资源受限的环境中,同时保持良好的性能。

项目 GPT2-chitchat 是由Yang Jianxin开发的一个开源代码库,用于构建基于GPT-2模型的中文闲聊机器人。该项目在GitHub上托管,并且是基于Hugging Face的Transformers库实现的。它利用了DialoGPT的多轮对话生成思想(MMI),以提升对话的自然性和连贯性【10†source】。

1 主要特点和结构

  • 代码结构:包括数据预处理(preprocess.py),模型训练(train.py),以及用户交互(interact.py)三个主要脚本。模型的训练数据和生成的字典也包含在项目文件夹中。
  • 模型训练与微调:使用train.py脚本进行模型训练,支持早停(early stopping)来防止过拟合。模型训练过程中,将多轮对话数据进行拼接后输入模型进行自回归训练。
  • 人机交互:通过interact.py脚本实现,允许用户与训练好的模型进行实时对话。该脚本支持调整多个生成参数,如topktopp等,以优化对话生成的质量。

2 环境依赖

项目运行需要Python 3.6环境,并且依赖于特定版本的transformerspytorch库(transformers4.2.0, pytorch1.7.0)。

3 应用示例

在模型训练好后,可以使用interact.py脚本与模型进行交互,生成的对话实例体现了模型的响应能力和对话质量。

4 数据预处理

使用preprocess.py对原始文本数据进行处理,包括分词和序列化,以便训练使用。预处理后的数据保存在train.pkl文件中,格式为多轮对话的列表。

该项目还包括丰富的闲聊语料资源链接,供进一步训练和测试使用。

5 模型分享

作者还提供了预训练模型的下载链接,方便用户直接下载使用,而无需从头开始训练。

整体而言,GPT2-chitchat 提供了一个完整的框架和丰富的工具,使研究人员和开发者能够在中文NLP领域,特别是在自动对话生成方面,进行实验和应用开发。更多详情可以参考其GitHub仓库。

四、总结

通过深入探索ChatGPT的架构、训练过程和应用场景,我们可以更好地理解并利用这项技术。希望本文能为读者提供有价值的见解和帮助。

往期优秀文章推荐:

  1. 研究生入门工具——让你事半功倍的SCI、EI论文写作神器
  2. 磕磕绊绊的双非硕秋招之路小结
  3. 研一学习笔记-小白NLP入门学习笔记
  4. C++ LinuxWebServer 2万7千字的面经长文(上)
  5. C++Qt5.9学习笔记-事件1.5W字总结
    在这里插入图片描述

资料、源码获取以及更多粉丝福利
推荐

这篇关于解锁ChatGPT:从GPT-2实践入手解密ChatGPT的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1047465

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

SpringBoot整合DeepSeek实现AI对话功能

《SpringBoot整合DeepSeek实现AI对话功能》本文介绍了如何在SpringBoot项目中整合DeepSeekAPI和本地私有化部署DeepSeekR1模型,通过SpringAI框架简化了... 目录Spring AI版本依赖整合DeepSeek API key整合本地化部署的DeepSeek

C++实现封装的顺序表的操作与实践

《C++实现封装的顺序表的操作与实践》在程序设计中,顺序表是一种常见的线性数据结构,通常用于存储具有固定顺序的元素,与链表不同,顺序表中的元素是连续存储的,因此访问速度较快,但插入和删除操作的效率可能... 目录一、顺序表的基本概念二、顺序表类的设计1. 顺序表类的成员变量2. 构造函数和析构函数三、顺序表

python实现简易SSL的项目实践

《python实现简易SSL的项目实践》本文主要介绍了python实现简易SSL的项目实践,包括CA.py、server.py和client.py三个模块,文中通过示例代码介绍的非常详细,对大家的学习... 目录运行环境运行前准备程序实现与流程说明运行截图代码CA.pyclient.pyserver.py参

使用C++实现单链表的操作与实践

《使用C++实现单链表的操作与实践》在程序设计中,链表是一种常见的数据结构,特别是在动态数据管理、频繁插入和删除元素的场景中,链表相比于数组,具有更高的灵活性和高效性,尤其是在需要频繁修改数据结构的应... 目录一、单链表的基本概念二、单链表类的设计1. 节点的定义2. 链表的类定义三、单链表的操作实现四、

Spring Boot统一异常拦截实践指南(最新推荐)

《SpringBoot统一异常拦截实践指南(最新推荐)》本文介绍了SpringBoot中统一异常处理的重要性及实现方案,包括使用`@ControllerAdvice`和`@ExceptionHand... 目录Spring Boot统一异常拦截实践指南一、为什么需要统一异常处理二、核心实现方案1. 基础组件