群体优化算法----树蛙优化算法介绍以及应用于资源分配示例

2024-06-10 03:36

本文主要是介绍群体优化算法----树蛙优化算法介绍以及应用于资源分配示例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

介绍

树蛙优化算法(Tree Frog Optimization Algorithm, TFO)是一种基于群体智能的优化算法,模拟了树蛙在自然环境中的跳跃和觅食行为。该算法通过模拟树蛙在树枝间的跳跃来寻找最优解,属于近年来发展起来的自然启发式算法的一种

算法背景与灵感

树蛙优化算法的灵感来源于树蛙的生态行为。树蛙在觅食过程中会在树枝间跳跃,以寻找食物。在这个过程中,树蛙会根据食物的味道(即目标函数的值)来决定跳跃的方向和距离。通过不断跳跃,树蛙能够找到食物最多的位置,这类似于优化问题中的全局最优解

算法结构与步骤

树蛙优化算法主要包括以下几个步骤:

1.初始化种群:随机生成树蛙种群,每只树蛙的位置代表一个可能的解。
2.适应度评估:计算每只树蛙的适应度值,即目标函数的值。
3.排序与分组:根据适应度值对树蛙进行排序,并将其分成若干个子群。
4.局部搜索:在每个子群内,树蛙进行局部搜索,尝试改进自己的位置。具体做法是:选取子群内适应度最好的树蛙作为局部最优树蛙;
其他树蛙根据局部最优树蛙的位置进行跳跃,更新自己的位置。
5.全局搜索:在整个种群范围内,选取适应度最好的树蛙作为全局最优树蛙,其他树蛙根据全局最优树蛙的位置进行跳跃。
6.更新位置:根据跳跃的方向和距离更新树蛙的位置。
7.迭代:重复步骤2到6,直到满足停止条件(如达到最大迭代次数或找到满意的解)

算法特点

多样性与全局搜索能力:通过分组和局部搜索,树蛙优化算法能够保持种群的多样性,避免陷入局部最优。同时,全局搜索步骤确保了算法具有强大的全局搜索能力。
灵活性与适应性:树蛙优化算法可以适应各种复杂的优化问题,包括连续和离散优化问题。
简单性与易实现性:该算法结构简单,易于实现,并且计算复杂度较低。

应用于领域

树蛙优化算法已经在多个领域得到了应用,包括但不限于:

工程优化:如结构设计、路径规划、资源分配等问题。
机器学习:如神经网络训练、特征选择等问题。
图像处理:如图像分割、图像匹配等问题

本文实例

我们将演示树蛙在资源分配上的应用,假设我们有一个简单的资源分配问题,需要在若干个项目之间分配一定的资源,使得总收益最大化。我们将使用树蛙优化算法来解决这个问题
步骤:
定义问题: 假设有n个项目和m个资源,每个项目的资源需求和收益是已知的。
初始化种群: 随机生成树蛙种群,每只树蛙的位置表示一种资源分配方案。
适应度评估: 计算每只树蛙的适应度值,即资源分配方案的总收益。
排序与分组: 根据适应度值对树蛙进行排序,并将其分成若干个子群。
局部搜索与全局搜索: 通过局部和全局搜索,更新树蛙的位置,以找到最优的资源分配方案。
更新位置与迭代: 重复上述过程直到达到停止条件

代码

function treeFrogOptimization()% 参数设置numFrogs = 30;  % 树蛙数量numGroups = 5;  % 分组数量maxIterations = 100;  % 最大迭代次数numProjects = 10;  % 项目数量numResources = 3;  % 资源种类数量% 资源需求和收益矩阵resourceDemand = randi([1, 10], numProjects, numResources);projectProfit = randi([10, 100], numProjects, 1);totalResources = [50, 50, 50]; % 每种资源的总量% 初始化种群frogs = randi([0, 1], numFrogs, numProjects, numResources);fitness = zeros(numFrogs, 1);% 计算初始适应度for i = 1:numFrogsfitness(i) = evaluateFitness(squeeze(frogs(i, :, :)), resourceDemand, projectProfit, totalResources);end% 主循环for iter = 1:maxIterations% 排序并分组[fitness, sortedIdx] = sort(fitness, 'descend');frogs = frogs(sortedIdx, :, :);groups = cell(numGroups, 1);for i = 1:numGroupsgroups{i} = frogs(i:numGroups:end, :, :);end% 局部搜索for i = 1:numGroupslocalBestFrog = groups{i}(1, :, :);for j = 2:size(groups{i}, 1)newFrog = localSearch(squeeze(groups{i}(j, :, :)), squeeze(localBestFrog));newFitness = evaluateFitness(newFrog, resourceDemand, projectProfit, totalResources);if newFitness > fitness((i-1) * numGroups + j)frogs((i-1) * numGroups + j, :, :) = newFrog;fitness((i-1) * numGroups + j) = newFitness;endendend% 全局搜索globalBestFrog = frogs(1, :, :);for i = 2:numFrogsnewFrog = globalSearch(squeeze(frogs(i, :, :)), squeeze(globalBestFrog));newFitness = evaluateFitness(newFrog, resourceDemand, projectProfit, totalResources);if newFitness > fitness(i)frogs(i, :, :) = newFrog;fitness(i) = newFitness;endendend% 输出最优解disp('最优资源分配方案:');disp(squeeze(frogs(1, :, :)));disp('最大收益:');disp(fitness(1));
end% 评估适应度函数
function fitness = evaluateFitness(frog, resourceDemand, projectProfit, totalResources)totalProfit = sum(projectProfit .* (sum(frog, 2) > 0));resourceUsed = sum(frog, 1);if any(resourceUsed > totalResources)fitness = 0;  % 资源超出限制,适应度设为0elsefitness = totalProfit;end
end% 改进局部搜索函数
function newFrog = localSearch(frog, localBestFrog)mutationProb = 0.1;newFrog = frog;for i = 1:size(frog, 1)for j = 1:size(frog, 2)if rand < mutationProbnewFrog(i, j) = ~frog(i, j);  % 翻转当前位endendendif rand < 0.5  % 50%的概率交换局部最优解和当前解的部分资源分配swapIndex = randi(size(frog, 2), 1);newFrog(:, swapIndex) = localBestFrog(:, swapIndex);end
end% 改进全局搜索函数
function newFrog = globalSearch(frog, globalBestFrog)mutationProb = 0.2;newFrog = frog;for i = 1:size(frog, 1)for j = 1:size(frog, 2)if rand < mutationProbnewFrog(i, j) = ~frog(i, j);  % 翻转当前位endendendif rand < 0.5  % 50%的概率交换全局最优解和当前解的部分资源分配swapIndex = randi(size(frog, 2), 1);newFrog(:, swapIndex) = globalBestFrog(:, swapIndex);end
end

说明

参数设置与初始化:定义树蛙数量、分组数量、最大迭代次数以及项目和资源的数量。随机生成资源需求矩阵和项目收益向量。
初始化种群:随机生成树蛙种群,每只树蛙的位置表示一种资源分配方案(0或1表示是否分配资源)。
适应度评估:计算每只树蛙的适应度,即资源分配方案的总收益。
排序与分组:根据适应度对树蛙进行排序,并将其分成若干个子群。
局部搜索与全局搜索:分别在子群内和全局范围内进行搜索,更新树蛙的位置。
输出最优解:经过迭代,输出最优的资源分配方案和最大收益

注意事项

资源约束:在实际应用中,可能需要考虑资源的总量约束,这可以在适应度评估函数中进行调整。
参数调整:算法的性能可能受参数设置的影响,如树蛙数量、分组数量、最大迭代次数和变异概率等,可以根据具体问题进行调整。
改进算法:可以引入更多高级的局部搜索策略和全局搜索策略,提高算法的优化能力和收敛速度。

效果

在这里插入图片描述

这篇关于群体优化算法----树蛙优化算法介绍以及应用于资源分配示例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1047111

相关文章

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹

c++中的set容器介绍及操作大全

《c++中的set容器介绍及操作大全》:本文主要介绍c++中的set容器介绍及操作大全,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录​​一、核心特性​​️ ​​二、基本操作​​​​1. 初始化与赋值​​​​2. 增删查操作​​​​3. 遍历方

C++11作用域枚举(Scoped Enums)的实现示例

《C++11作用域枚举(ScopedEnums)的实现示例》枚举类型是一种非常实用的工具,C++11标准引入了作用域枚举,也称为强类型枚举,本文主要介绍了C++11作用域枚举(ScopedEnums... 目录一、引言二、传统枚举类型的局限性2.1 命名空间污染2.2 整型提升问题2.3 类型转换问题三、C