群体优化算法----树蛙优化算法介绍以及应用于资源分配示例

2024-06-10 03:36

本文主要是介绍群体优化算法----树蛙优化算法介绍以及应用于资源分配示例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

介绍

树蛙优化算法(Tree Frog Optimization Algorithm, TFO)是一种基于群体智能的优化算法,模拟了树蛙在自然环境中的跳跃和觅食行为。该算法通过模拟树蛙在树枝间的跳跃来寻找最优解,属于近年来发展起来的自然启发式算法的一种

算法背景与灵感

树蛙优化算法的灵感来源于树蛙的生态行为。树蛙在觅食过程中会在树枝间跳跃,以寻找食物。在这个过程中,树蛙会根据食物的味道(即目标函数的值)来决定跳跃的方向和距离。通过不断跳跃,树蛙能够找到食物最多的位置,这类似于优化问题中的全局最优解

算法结构与步骤

树蛙优化算法主要包括以下几个步骤:

1.初始化种群:随机生成树蛙种群,每只树蛙的位置代表一个可能的解。
2.适应度评估:计算每只树蛙的适应度值,即目标函数的值。
3.排序与分组:根据适应度值对树蛙进行排序,并将其分成若干个子群。
4.局部搜索:在每个子群内,树蛙进行局部搜索,尝试改进自己的位置。具体做法是:选取子群内适应度最好的树蛙作为局部最优树蛙;
其他树蛙根据局部最优树蛙的位置进行跳跃,更新自己的位置。
5.全局搜索:在整个种群范围内,选取适应度最好的树蛙作为全局最优树蛙,其他树蛙根据全局最优树蛙的位置进行跳跃。
6.更新位置:根据跳跃的方向和距离更新树蛙的位置。
7.迭代:重复步骤2到6,直到满足停止条件(如达到最大迭代次数或找到满意的解)

算法特点

多样性与全局搜索能力:通过分组和局部搜索,树蛙优化算法能够保持种群的多样性,避免陷入局部最优。同时,全局搜索步骤确保了算法具有强大的全局搜索能力。
灵活性与适应性:树蛙优化算法可以适应各种复杂的优化问题,包括连续和离散优化问题。
简单性与易实现性:该算法结构简单,易于实现,并且计算复杂度较低。

应用于领域

树蛙优化算法已经在多个领域得到了应用,包括但不限于:

工程优化:如结构设计、路径规划、资源分配等问题。
机器学习:如神经网络训练、特征选择等问题。
图像处理:如图像分割、图像匹配等问题

本文实例

我们将演示树蛙在资源分配上的应用,假设我们有一个简单的资源分配问题,需要在若干个项目之间分配一定的资源,使得总收益最大化。我们将使用树蛙优化算法来解决这个问题
步骤:
定义问题: 假设有n个项目和m个资源,每个项目的资源需求和收益是已知的。
初始化种群: 随机生成树蛙种群,每只树蛙的位置表示一种资源分配方案。
适应度评估: 计算每只树蛙的适应度值,即资源分配方案的总收益。
排序与分组: 根据适应度值对树蛙进行排序,并将其分成若干个子群。
局部搜索与全局搜索: 通过局部和全局搜索,更新树蛙的位置,以找到最优的资源分配方案。
更新位置与迭代: 重复上述过程直到达到停止条件

代码

function treeFrogOptimization()% 参数设置numFrogs = 30;  % 树蛙数量numGroups = 5;  % 分组数量maxIterations = 100;  % 最大迭代次数numProjects = 10;  % 项目数量numResources = 3;  % 资源种类数量% 资源需求和收益矩阵resourceDemand = randi([1, 10], numProjects, numResources);projectProfit = randi([10, 100], numProjects, 1);totalResources = [50, 50, 50]; % 每种资源的总量% 初始化种群frogs = randi([0, 1], numFrogs, numProjects, numResources);fitness = zeros(numFrogs, 1);% 计算初始适应度for i = 1:numFrogsfitness(i) = evaluateFitness(squeeze(frogs(i, :, :)), resourceDemand, projectProfit, totalResources);end% 主循环for iter = 1:maxIterations% 排序并分组[fitness, sortedIdx] = sort(fitness, 'descend');frogs = frogs(sortedIdx, :, :);groups = cell(numGroups, 1);for i = 1:numGroupsgroups{i} = frogs(i:numGroups:end, :, :);end% 局部搜索for i = 1:numGroupslocalBestFrog = groups{i}(1, :, :);for j = 2:size(groups{i}, 1)newFrog = localSearch(squeeze(groups{i}(j, :, :)), squeeze(localBestFrog));newFitness = evaluateFitness(newFrog, resourceDemand, projectProfit, totalResources);if newFitness > fitness((i-1) * numGroups + j)frogs((i-1) * numGroups + j, :, :) = newFrog;fitness((i-1) * numGroups + j) = newFitness;endendend% 全局搜索globalBestFrog = frogs(1, :, :);for i = 2:numFrogsnewFrog = globalSearch(squeeze(frogs(i, :, :)), squeeze(globalBestFrog));newFitness = evaluateFitness(newFrog, resourceDemand, projectProfit, totalResources);if newFitness > fitness(i)frogs(i, :, :) = newFrog;fitness(i) = newFitness;endendend% 输出最优解disp('最优资源分配方案:');disp(squeeze(frogs(1, :, :)));disp('最大收益:');disp(fitness(1));
end% 评估适应度函数
function fitness = evaluateFitness(frog, resourceDemand, projectProfit, totalResources)totalProfit = sum(projectProfit .* (sum(frog, 2) > 0));resourceUsed = sum(frog, 1);if any(resourceUsed > totalResources)fitness = 0;  % 资源超出限制,适应度设为0elsefitness = totalProfit;end
end% 改进局部搜索函数
function newFrog = localSearch(frog, localBestFrog)mutationProb = 0.1;newFrog = frog;for i = 1:size(frog, 1)for j = 1:size(frog, 2)if rand < mutationProbnewFrog(i, j) = ~frog(i, j);  % 翻转当前位endendendif rand < 0.5  % 50%的概率交换局部最优解和当前解的部分资源分配swapIndex = randi(size(frog, 2), 1);newFrog(:, swapIndex) = localBestFrog(:, swapIndex);end
end% 改进全局搜索函数
function newFrog = globalSearch(frog, globalBestFrog)mutationProb = 0.2;newFrog = frog;for i = 1:size(frog, 1)for j = 1:size(frog, 2)if rand < mutationProbnewFrog(i, j) = ~frog(i, j);  % 翻转当前位endendendif rand < 0.5  % 50%的概率交换全局最优解和当前解的部分资源分配swapIndex = randi(size(frog, 2), 1);newFrog(:, swapIndex) = globalBestFrog(:, swapIndex);end
end

说明

参数设置与初始化:定义树蛙数量、分组数量、最大迭代次数以及项目和资源的数量。随机生成资源需求矩阵和项目收益向量。
初始化种群:随机生成树蛙种群,每只树蛙的位置表示一种资源分配方案(0或1表示是否分配资源)。
适应度评估:计算每只树蛙的适应度,即资源分配方案的总收益。
排序与分组:根据适应度对树蛙进行排序,并将其分成若干个子群。
局部搜索与全局搜索:分别在子群内和全局范围内进行搜索,更新树蛙的位置。
输出最优解:经过迭代,输出最优的资源分配方案和最大收益

注意事项

资源约束:在实际应用中,可能需要考虑资源的总量约束,这可以在适应度评估函数中进行调整。
参数调整:算法的性能可能受参数设置的影响,如树蛙数量、分组数量、最大迭代次数和变异概率等,可以根据具体问题进行调整。
改进算法:可以引入更多高级的局部搜索策略和全局搜索策略,提高算法的优化能力和收敛速度。

效果

在这里插入图片描述

这篇关于群体优化算法----树蛙优化算法介绍以及应用于资源分配示例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1047111

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个