【调度算法】Boltzmann选择

2024-06-10 00:52
文章标签 算法 选择 调度 boltzmann

本文主要是介绍【调度算法】Boltzmann选择,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Boltzmann选择是一种基于Boltzmann分布的选择策略,主要用于进化算法中的个体选择过程。它通过模拟物理系统的热平衡状态来调节个体选择的概率,能够在进化初期保持种群多样性,并在进化后期集中选择适应度高的个体。

Boltzmann选择的表达式

Boltzmann选择的主要表达式如下:

P i = exp ⁡ ( f i T ) ∑ j = 1 N exp ⁡ ( f j T ) P_i = \frac{\exp\left(\frac{f_i}{T}\right)}{\sum_{j=1}^{N} \exp\left(\frac{f_j}{T}\right)} Pi=j=1Nexp(Tfj)exp(Tfi)

对应字母的含义

  • P i P_i Pi:第 (i) 个个体被选择的概率。
  • f i f_i fi:第 (i) 个个体的适应度值(fitness)。
  • T T T:温度参数,用于调节选择压力。高温度时,选择过程较为随机;低温度时,选择过程趋于确定性。
  • N N N:种群中的个体总数。
  • exp ⁡ \exp exp:指数函数。

表达式的解释

  1. 计算选择概率:表达式中的 exp ⁡ ( f i T ) \exp\left(\frac{f_i}{T}\right) exp(Tfi)用于计算第 i i i个个体的“选择权重”。适应度 f i f_i fi越大,该个体的选择权重越高。

  2. 归一化:将所有个体的选择权重求和,然后将第 i i i个个体的选择权重除以总和,得到该个体的选择概率 P i P_i Pi。这样,所有个体的选择概率之和为1。

  3. 温度参数 T T T:温度 T T T控制选择的随机性。高温度时,各个体的选择概率差异较小,选择过程更随机;低温度时,适应度高的个体选择概率显著增加,选择过程更倾向于适应度高的个体。

选择概率的计算示例

假设有4个个体,其适应度值分别为 ([10, 20, 30, 40]),温度 ( T = 10 ),计算其选择概率:

import numpy as npfitness = np.array([10, 20, 30, 40])
T = 10# 计算选择权重
weights = np.exp(fitness / T)# 归一化计算选择概率
probabilities = weights / np.sum(weights)print(probabilities)

输出的选择概率可能类似于:

[0.0320586  0.08714432 0.23688282 0.64391426]

这表示第4个个体(适应度40)的选择概率最高,而第1个个体(适应度10)的选择概率最低。

总结

Boltzmann选择通过引入温度参数 T T T调节个体选择的随机性,能够在进化过程中动态平衡探索与开发。其核心在于利用适应度值和Boltzmann分布计算个体选择概率,使得在高温度时保持种群多样性,在低温度时集中选择适应度高的个体。

这篇关于【调度算法】Boltzmann选择的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1046786

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

如何选择适合孤独症兄妹的学校?

在探索适合孤独症儿童教育的道路上,每一位家长都面临着前所未有的挑战与抉择。当这份责任落在拥有孤独症兄妹的家庭肩上时,选择一所能够同时满足两个孩子特殊需求的学校,更显得尤为关键。本文将探讨如何为这样的家庭做出明智的选择,并介绍星贝育园自闭症儿童寄宿制学校作为一个值得考虑的选项。 理解孤独症儿童的独特性 孤独症,这一复杂的神经发育障碍,影响着儿童的社交互动、沟通能力以及行为模式。对于拥有孤独症兄

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

搭建Kafka+zookeeper集群调度

前言 硬件环境 172.18.0.5        kafkazk1        Kafka+zookeeper                Kafka Broker集群 172.18.0.6        kafkazk2        Kafka+zookeeper                Kafka Broker集群 172.18.0.7        kafkazk3

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验