Diffusers代码学习: T2I Adapter

2024-06-10 00:36

本文主要是介绍Diffusers代码学习: T2I Adapter,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

T2I Adapter是一款轻量级适配器,用于控制文本到图像模型并为其提供更准确的结构指导。它通过学习文本到图像模型的内部知识与外部控制信号(如边缘检测或深度估计)之间的对齐来工作。

T2I Adapter的设计很简单,条件被传递到四个特征提取块和三个下采样块。这使得针对不同的条件快速而容易地训练不同的适配器,这些适配器可以插入到文本到图像模型中。T2I Adapter与ControlNet类似,只是它更小(约77M个参数),速度更快,因为它在扩散过程中只运行一次。缺点是性能可能比ControlNet稍差。

文本到图像模型依赖于提示来生成图像,但有时,仅凭文本可能不足以提供更准确的结构指导。T2I Adapter允许您提供额外的控制图像来指导生成过程。例如,您可以提供一个Canny的图像(黑色背景上图像的白色轮廓)来引导模型生成具有类似结构的图像。

# 以下代码为程序运行进行设置

import os
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
mport cv2
import numpy as np

from PIL import Image

# 程序需要能够支持加载图片

from diffusers.utils import load_image

# 以下代码加载边缘检测图的原型图片

image = load_image("https://hf-mirror.com/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png")

image = np.array(image)

low_threshold = 100
high_threshold = 200

# 以下代码生成边缘检测图

image = cv2.Canny(image, low_threshold, high_threshold)

image = Image.fromarray(image)
 

# 以下代码加载StableDiffusionAdapter自动管道,及T2I Adapter
import torch
from diffusers import StableDiffusionAdapterPipeline, T2IAdapteradapter = T2IAdapter.from_pretrained("TencentARC/t2iadapter_canny_sd15v2", torch_dtype=torch.float16)
pipeline = StableDiffusionAdapterPipeline.from_pretrained("runwayml/stable-diffusion-v1-5",adapter=adapter,torch_dtype=torch.float16,
)
pipeline.to("cuda")

# 以下代码加载并处理提示词,基于边缘检测图生成图片

generator = torch.Generator("cuda").manual_seed(0)


image = pipeline(
prompt="cinematic photo of a plush and soft midcentury style rug on a wooden floor, 35mm photograph, film, professional, 4k, highly detailed",
image=image,
generator=generator,
).images[0]

image.show()

以下是边缘检测图的原型图片

图片

以下是边缘检测图的原型图片

图片

以下是生成的图片

图片

这篇关于Diffusers代码学习: T2I Adapter的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1046744

相关文章

javaScript在表单提交时获取表单数据的示例代码

《javaScript在表单提交时获取表单数据的示例代码》本文介绍了五种在JavaScript中获取表单数据的方法:使用FormData对象、手动提取表单数据、使用querySelector获取单个字... 方法 1:使用 FormData 对象FormData 是一个方便的内置对象,用于获取表单中的键值

Vue ElementUI中Upload组件批量上传的实现代码

《VueElementUI中Upload组件批量上传的实现代码》ElementUI中Upload组件批量上传通过获取upload组件的DOM、文件、上传地址和数据,封装uploadFiles方法,使... ElementUI中Upload组件如何批量上传首先就是upload组件 <el-upl

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav