k8s学习--kubernetes服务自动伸缩之垂直伸缩(资源伸缩)VPA详细解释与安装

本文主要是介绍k8s学习--kubernetes服务自动伸缩之垂直伸缩(资源伸缩)VPA详细解释与安装,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • VPA简介
    • 简单理解
    • 详细解释
      • VPA的优缺点
        • 优点
          • 1.自动化资源管理
          • 2.资源优化
          • 3.性能和稳定性提升
          • 5.成本节约
          • 6.集成性和灵活性
        • 缺点
          • 1.Pod 重启影响可用性
          • 2.与 HPA 冲突
          • 3.资源监控和推荐滞后:
          • 4.实现复杂度:
      • 核心概念
        • Resource Requests 和 Limits
        • 自动调节
      • VPA 的工作原理
      • VPA 组件
      • VPA 使用场景
  • 应用
    • 环境
      • 1.部署metrics-server及VPA
        • (1)部署metrics-server
        • (2)升级openssl(所有节点)
        • (3)部署VPA
        • 2.VPA策略


前言

有任何疑问或不懂的地方均可评论或私信,欢迎交流

VPA简介

官方链接
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler

简单理解

与HPA类似,区别在于HPA自动控制的pod副本数量
而VPA则自动控制的是CPU 和 内存 的requests,从而允许在节点上进行适当的调度,以便为每个 Pod 提供适当的资源。

注: 不能与HPA(Horizontal Pod Autoscaler )一起使用

这个是博主写的有关HPA的博客,有兴趣的可以看看
链接: HPA详细解释与应用

详细解释

在 Kubernetes(k8s)中,Vertical Pod Autoscaler(VPA)是一种自动调节 Pod 中容器资源请求(CPU 和内存)的工具。它可以根据 Pod 的实际使用情况自动调整这些资源请求,以确保应用程序具有足够的资源运行,并同时避免资源的浪费。

VPA的优缺点

优点
1.自动化资源管理

简化运维:VPA 自动调整 Pod 的资源请求,减少手动调整的工作量。
动态响应:能实时根据实际资源使用情况调整请求,适应负载变化。

2.资源优化

避免资源浪费:确保 Pod 只请求所需的资源,降低不必要的资源分配。
提高资源利用率:通过优化资源请求,增加集群中可用资源的数量,提高整体资源利用率。

3.性能和稳定性提升

防止资源不足:自动增加资源请求,确保应用在高负载时也能正常运行。
优化性能:通过合理的资源配置,确保应用程序性能得到保障。

5.成本节约

降低运营成本:通过精准的资源配置,减少过度配置带来的成本,提高资源利用效率。

6.集成性和灵活性

兼容性好:VPA 可以与 Kubernetes 中的其他工具(如 HPA)一起使用,以实现全面的自动扩展策略。
可配置性强:提供多种更新策略(如 Auto、Recreate、Initial),适应不同的应用场景。

缺点
1.Pod 重启影响可用性

重启开销:资源请求的更新通常需要重启 Pod,这可能会导致服务短暂不可用,影响用户体验。
滚动更新问题:在滚动更新过程中,如果频繁调整资源请求,可能会导致更新过程复杂化。

2.与 HPA 冲突

配置复杂
同时使用 VPA 和 Horizontal Pod Autoscaler (HPA) 时,可能会产生冲突,需要谨慎配置和管理。
负载模式不同
HPA 和 VPA 针对不同的负载模式(水平扩展 vs. 垂直扩展),混用时需要综合考虑应用负载特性。

3.资源监控和推荐滞后:

数据滞后 :VPA 基于历史资源使用数据做出推荐,可能存在一定的滞后性,无法实时反映最新的负载变化。
推荐准确性:在负载波动剧烈的情况下,推荐值可能不够准确,导致资源配置不够理想。

4.实现复杂度:

依赖数据质量:VPA 的推荐依赖于准确的资源使用数据,集群监控和数据收集的质量对 VPA 的效果有直接影响。
维护复杂度:需要对 VPA 本身进行维护和监控,确保其正常运行和推荐的准确性。

核心概念

Resource Requests 和 Limits

Requests
容器启动时所需的最小资源量,Kubernetes 会基于 requests 来做调度决策。
Limits
容器能使用的最大资源量,防止单个容器使用过多资源。


自动调节

Vertical Scaling:不同于水平扩展(Horizontal Scaling)通过增加 Pod 数量来应对负载,垂直扩展(Vertical Scaling)是调整单个 Pod 的资源配额。

VPA 的工作原理

监控:VPA 通过监控 Pod 的实际资源使用情况来确定是否需要调整资源请求。
推荐:基于历史数据和当前使用情况,VPA 会生成资源请求的推荐值。
更新:VPA 可以自动更新 Pod 的资源请求,触发 Pod 重启使配置生效。

更新策略可以配置为以下几种:
Auto:自动更新 Pod。
Recreate:删除并重新创建 Pod。
Initial:只在 Pod 初始创建时设置资源请求。

VPA 组件

Recommender:收集资源使用数据并生成资源请求的推荐值。
Updater:负责执行资源请求的更新,可以根据策略决定是否重启 Pod。
Admission Controller:在 Pod 创建和更新时应用资源请求的推荐值。

VPA 使用场景

应用负载变化:适合那些资源需求动态变化的应用。
节省成本:通过合理配置资源请求和限制,避免资源浪费。
提高稳定性:确保应用有足够的资源应对高负载情况。

应用

环境

虚拟机

Ip主机名cpu内存硬盘
192.168.10.11master012cpu双核4G100G
192.168.10.12worker012cpu双核4G100G
192.168.10.13worker022cpu双核4G100G

版本 centos7.9
已部署k8s-1.27

1.部署metrics-server及VPA

(1)部署metrics-server

master上操作

wget https://github.com/kubernetes-sigs/metrics-server/releases/latest/download/high-availability-1.21+.yaml

kubelet 证书需要由集群证书颁发机构签名

(或者通过向 Metrics Server 传递参数 --kubelet-insecure-tls 来禁用证书验证)。

更改文件

vim high-availability-1.21+.yaml

149行添加
在这里插入图片描述
解释
因为是虚拟机环境,这条命令是允许 kubelet 使用不安全的 TLS 连接,生产环境不建议使用,这里是便于快速部署和测试已看到效果。

kubectl apply -f high-availability-1.21+.yaml 
watch kubectl get pods -n kube-system 

耐心等待,如果一直起不来就先删除pod再重启个节点docker。
在这里插入图片描述

kubectl top nodes

在这里插入图片描述

kubectl top pods -n kube-system

在这里插入图片描述
这里就部署好了

(2)升级openssl(所有节点)
curl -o /etc/yum.repos.d/epel.repo http://mirrors.aliyun.com/repo/epel-7.repo
yum install -y openssl-devel openssl11 openssl11-devel

检查下载的 OpenSSL新库版本

openssl11 version

在这里插入图片描述
查看旧版本路径

which openssl

在这里插入图片描述

查看新版本路径

which openssl11

在这里插入图片描述
删除系统默认版本,并创建一个软连接指向新版本

rm -rf `which openssl`
ln -s /usr/bin/openssl11 /usr/bin/openssl

查看默认版本,可以看到已经是新版本了

openssl version

在这里插入图片描述

(3)部署VPA

master节点

mkdir vpa
cd vpa
git clone https://github.com/kubernetes/autoscaler.git
cd autoscaler/vertical-pod-autoscaler/
ls hack/
bash ./hack/vpa-up.sh
cd ..
kubectl get pods -n kube-system

没有running就等一会
在这里插入图片描述
这样就好了

2.VPA策略

在VPA中,updateMode 是一个重要的配置选项,它决定了VPA如何应用其提供的资源建议。根据不同的设置,VPA可以采取不同的策略来更新Pod的资源配置:

Off
VPA不会应用任何资源推荐,只是收集和显示数据。

Initial:
VPA只会在Pod创建时应用资源推荐。一旦Pod启动,即使后续有新的资源推荐,也不会再进行调整。

Recreate:
当VPA生成新的资源推荐时,它会终止当前的Pod并重新创建一个新的Pod,新Pod将采用最新的资源推荐。这种方式会导致服务短暂中断,但能确保立即应用新的资源设置。

Auto:
这是默认模式。在这种模式下,VPA会尝试在线调整运行中的Pod的资源请求和限制,而无需重启Pod。如果无法在线调整(例如,由于内核或Kubernetes版本的限制),则会选择重新创建Pod。

由于篇幅过长,关于模式的演示会单独出(水)一篇博客

这篇关于k8s学习--kubernetes服务自动伸缩之垂直伸缩(资源伸缩)VPA详细解释与安装的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1046255

相关文章

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

如何为Yarn配置国内源的详细教程

《如何为Yarn配置国内源的详细教程》在使用Yarn进行项目开发时,由于网络原因,直接使用官方源可能会导致下载速度慢或连接失败,配置国内源可以显著提高包的下载速度和稳定性,本文将详细介绍如何为Yarn... 目录一、查询当前使用的镜像源二、设置国内源1. 设置为淘宝镜像源2. 设置为其他国内源三、还原为官方

最详细安装 PostgreSQL方法及常见问题解决

《最详细安装PostgreSQL方法及常见问题解决》:本文主要介绍最详细安装PostgreSQL方法及常见问题解决,介绍了在Windows系统上安装PostgreSQL及Linux系统上安装Po... 目录一、在 Windows 系统上安装 PostgreSQL1. 下载 PostgreSQL 安装包2.

Maven如何手动安装依赖到本地仓库

《Maven如何手动安装依赖到本地仓库》:本文主要介绍Maven如何手动安装依赖到本地仓库问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、下载依赖二、安装 JAR 文件到本地仓库三、验证安装四、在项目中使用该依赖1、注意事项2、额外提示总结一、下载依赖登

springboot项目如何开启https服务

《springboot项目如何开启https服务》:本文主要介绍springboot项目如何开启https服务方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录springboot项目开启https服务1. 生成SSL证书密钥库使用keytool生成自签名证书将

MySql match against工具详细用法

《MySqlmatchagainst工具详细用法》在MySQL中,MATCH……AGAINST是全文索引(Full-Textindex)的查询语法,它允许你对文本进行高效的全文搜素,支持自然语言搜... 目录一、全文索引的基本概念二、创建全文索引三、自然语言搜索四、布尔搜索五、相关性排序六、全文索引的限制七

python中各种常见文件的读写操作与类型转换详细指南

《python中各种常见文件的读写操作与类型转换详细指南》这篇文章主要为大家详细介绍了python中各种常见文件(txt,xls,csv,sql,二进制文件)的读写操作与类型转换,感兴趣的小伙伴可以跟... 目录1.文件txt读写标准用法1.1写入文件1.2读取文件2. 二进制文件读取3. 大文件读取3.1

Linux内核参数配置与验证详细指南

《Linux内核参数配置与验证详细指南》在Linux系统运维和性能优化中,内核参数(sysctl)的配置至关重要,本文主要来聊聊如何配置与验证这些Linux内核参数,希望对大家有一定的帮助... 目录1. 引言2. 内核参数的作用3. 如何设置内核参数3.1 临时设置(重启失效)3.2 永久设置(重启仍生效

IDEA自动生成注释模板的配置教程

《IDEA自动生成注释模板的配置教程》本文介绍了如何在IntelliJIDEA中配置类和方法的注释模板,包括自动生成项目名称、包名、日期和时间等内容,以及如何定制参数和返回值的注释格式,需要的朋友可以... 目录项目场景配置方法类注释模板定义类开头的注释步骤类注释效果方法注释模板定义方法开头的注释步骤方法注

pytorch自动求梯度autograd的实现

《pytorch自动求梯度autograd的实现》autograd是一个自动微分引擎,它可以自动计算张量的梯度,本文主要介绍了pytorch自动求梯度autograd的实现,具有一定的参考价值,感兴趣... autograd是pytorch构建神经网络的核心。在 PyTorch 中,结合以下代码例子,当你