【PL理论】(12) F#:模块 | 命名空间 | 异常处理 | 内置异常 |:? | 相互递归函数

本文主要是介绍【PL理论】(12) F#:模块 | 命名空间 | 异常处理 | 内置异常 |:? | 相互递归函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

  • 💭 写在前面:本章我们将介绍 F# 的模块,我们前几章讲的列表、集合和映射都是模块。然后我们将介绍 F# 中的异常,以及内置异常,最后再讲解一下相互递归函数。

目录

0x00 F# 模块(Module)

0x01 F# 异常处理(Exception)

0x02 内置异常(Built-in Exceptions)

0x03 相互递归函数

0x04 通过泰勒级数展开来逼近计算 e^x


0x00 F# 模块(Module)

用于代码组织和抽象的特性,模块 (Module) 就是相关类型、值和函数的集合。

类似于面向对象编程中的类,但没有对象的概念。

比如我们说的的列表、集合和映射都是模块。

在这个章节后,我会给出一点练习题,方便大家更好地掌握 F# 基础。

为了方便大家没有负担地有效练习,我会在框架代码中勾勒出模块,你只需要填写就行了:

namespace DataStructuremodule Queue =type t = int list * int listlet empty: t = ([], [])let enqueue (i: int) (queue: t) = ...

另外,这个 namespace 就是命名空间,类似于 C++。

0x01 F# 异常处理(Exception)

F# 中也是可以 raise 捕获异常的,raise ... 会被求值为一个异常并传播。

使用 try-with 来捕获引发的异常,异常会被视为 any type,可以是任何类型 ( `a ) 。 

exception DivByZerolet div (x: int) (y: int) : int =if y = 0 then raise DivByZero else x / ylet printDiv (x: int) (y: int) : unit =try printfn "%d" (div x y) with| DivByZero -> printfn "Divisor is zero" 

0x02 内置异常(Built-in Exceptions)

F# 有不少预定义的异常,要捕获这些错误,你必须使用 |:? 

这是因为 F# 与 C# (.NET) 都是一个爹有着密不可分的关系。

这里提供几种还不错的选择,让你避免记住这些复杂的异常名称:

let doFind1 (k: string) (m: Map<string,int>) : int =try Map.find k m with| :? System.Collections.Generic.KeyNotFoundException -> 0let doFind2 (k: string) (m: Map<string,int>) : int =if Map.containsKey k m then Map.find k m else 0let doFind3 (k: string) (m: Map<string,int>) : int =match Map.tryFind k m with| None -> 0 | Some i -> i

0x03 相互递归函数

相互递归函数 (Mutually Recursive Function),指的是多个函数可以相互递归调用。

简单来说就是你递归调用我,我递归调用你,用 let rec ... and 语法来定义这样的函数。

💬 举个例子:我们来定义三个相互递归的函数

let rec f x =x + g (x - 1)and g y =if y <= 1 then 1 else y * h (y - 1)and h z =if z <= 2 then 0 else f (z - 1) + f (z - 2)

这段代码定义了三个相互递归的函数 f,g,h,它们彼此之间互相调用。

形成了一个循环,每个函数的返回值都依赖于其他函数的返回值,从而实现了相互递归。

0x04 通过泰勒级数展开来逼近计算 e^x

通过泰勒级数展开来逼近计算 e^x

① 首先计算 n 的阶乘:

n!=n\times (n-1)\times(n-2)\times...\times2\times1

我们定义一个递归函数 Fac 计算一个非负整数的阶乘,当输入值 n\leq 1 时,返回1。

否则,返回 n 乘以 (n-1)  的阶乘。

在 Tylor 函数中,Fac 被用来计算泰勒级数展开的分母部分,即 n!  。

② 再通过泰勒级数展开公式 (以 e 为底的指数函数) ,我们展开前十项:

e^x=\sum_{n=0 }^{\infty }\frac{x^n}{n!}\, \, \, \Rightarrow \, \, \, e^x\approx \sum_{n=0 }^{10}\frac{x^n}{n!}

再定义一个递归函数 Taylor 计算 e^x 的泰勒级数展开,当展开的级数项数 n=0 时,返回 1.0

否则计算 x^n/n!  并加上递归调用 Taylor 函数计算更低阶的项。

在 Taylor 函数中,Fac 函数被用来计算每一项的阶乘。

💬 代码演示:通过泰勒级数展开来逼近计算 e^x

let rec Fac n =if n <= 1 then 1else n * Fac (n - 1)let rec Taylor x n =if n = 0 then 1.0else (float x ** float n) / float (Fac n) + Taylor x (n - 1)// 计算 e^x 的值
let calculateExponential x =if System.Double.IsNaN(x) || System.Double.IsInfinity(x) theninvalidArg "x" "x must be a finite number"elseTaylor x 10  // 前10项

这两个函数就相互递归了,因为 Taylor 调用了 Fac 来计算阶乘,而 Fac 也会调用 Taylor。

你可以发现,我们没有使用刚才讲的 "0x03 相互递归",let rec ... and。

因为每次计算阶乘都会重新计算泰勒级数的一部分,导致大量的重复计算:

let rec Fac n =if n <= 1 then 1else n * Taylor (n - 1) 1and Taylor x n =if n = 0 then 1.0else (float x ** float n) / float (Fac n) + Taylor x (n - 1)// 计算 e^x 的值
let calculateExponential x =if System.Double.IsNaN(x) || System.Double.IsInfinity(x) theninvalidArg "x" "x must be a finite number"elseTaylor x 10  // 前10项// 测试计算函数
let result = calculateExponential 1.0
printfn "e^1 的值近似为: %f" result


📌 [ 笔者 ]   王亦优
📃 [ 更新 ]   2024.6.16
❌ [ 勘误 ]   /* 暂无 */
📜 [ 声明 ]   由于作者水平有限,本文有错误和不准确之处在所难免,本人也很想知道这些错误,恳望读者批评指正!

📜 参考资料 

Microsoft. MSDN(Microsoft Developer Network)[EB/OL]. []. .

这篇关于【PL理论】(12) F#:模块 | 命名空间 | 异常处理 | 内置异常 |:? | 相互递归函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1046122

相关文章

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

SpringBoot操作spark处理hdfs文件的操作方法

《SpringBoot操作spark处理hdfs文件的操作方法》本文介绍了如何使用SpringBoot操作Spark处理HDFS文件,包括导入依赖、配置Spark信息、编写Controller和Ser... 目录SpringBoot操作spark处理hdfs文件1、导入依赖2、配置spark信息3、cont

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

Python中异常类型ValueError使用方法与场景

《Python中异常类型ValueError使用方法与场景》:本文主要介绍Python中的ValueError异常类型,它在处理不合适的值时抛出,并提供如何有效使用ValueError的建议,文中... 目录前言什么是 ValueError?什么时候会用到 ValueError?场景 1: 转换数据类型场景

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

Python模块导入的几种方法实现

《Python模块导入的几种方法实现》本文主要介绍了Python模块导入的几种方法实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录一、什么是模块?二、模块导入的基本方法1. 使用import整个模块2.使用from ... i

MyBatis延迟加载的处理方案

《MyBatis延迟加载的处理方案》MyBatis支持延迟加载(LazyLoading),允许在需要数据时才从数据库加载,而不是在查询结果第一次返回时就立即加载所有数据,延迟加载的核心思想是,将关联对... 目录MyBATis如何处理延迟加载?延迟加载的原理1. 开启延迟加载2. 延迟加载的配置2.1 使用

Android WebView的加载超时处理方案

《AndroidWebView的加载超时处理方案》在Android开发中,WebView是一个常用的组件,用于在应用中嵌入网页,然而,当网络状况不佳或页面加载过慢时,用户可能会遇到加载超时的问题,本... 目录引言一、WebView加载超时的原因二、加载超时处理方案1. 使用Handler和Timer进行超