使用MATLAB的BP神经网络进行数据分类任务(简单版)

2024-06-09 04:44

本文主要是介绍使用MATLAB的BP神经网络进行数据分类任务(简单版),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        BP神经网络,即反向传播(Backpropagation)神经网络,是一种多层前馈神经网络,它通过反向传播算法来更新网络权重。这种网络结构特别适合于分类和回归任务。

MATLAB环境设置

        在开始之前,请确保MATLAB环境已经设置好,并且安装了神经网络工具箱。

        同时,写下基础代码:

% 清空环境变量并关闭警告消息
warning off;
clear;
clc;

数据导入与预处理

        数据是机器学习的核心。在本例中,我们将从一个名为data.xlsx的Excel文件中导入数据。假设数据集中前5列是输入特征,第6列是输出标签。

% 划分训练集和测试集
% 使用随机排列来确保数据的随机性
indices = randperm(10);
% 取前10个数据作为训练集
P_train = data(indices(1:10), 1:5)';
T_train = data(indices(1:10), 6)';
% 计算训练集的大小
numTrainSamples = size(P_train, 2);% 测试集使用相同的随机排列,确保训练集和测试集的一致性
P_test = data(indices(1:10), 1:5)';
T_test = data(indices(1:10), 6)';
% 计算测试集的大小
numTestSamples = size(P_test, 2);

        接下来,我们需要划分数据为训练集和测试集,并对数据进行归一化处理以提高训练效率。

% 数据归一化处理
% 对训练集进行归一化,并保存归一化参数
[P_train_norm, normalizationParams] = mapminmax(P_train, 0, 1);
% 使用训练集的归一化参数对测试集进行归一化
P_test_norm = mapminmax('apply', P_test, normalizationParams);% 将输出数据进行独热编码
T_train_encoded = ind2vec(T_train);
T_test_encoded = ind2vec(T_test);

建立BP神经网络模型

        在MATLAB中,我们可以使用newff函数来快速建立一个BP神经网络模型。这个函数允许我们指定输入、输出和隐藏层的大小。

% 建立神经网络模型
% 使用新的前馈网络函数newff,输入为归一化后的训练集特征,输出为编码后的输出数据
net = newff(P_train_norm, T_train_encoded, [6 6 1]);

设置训练参数

        在训练神经网络之前,我们需要设置一些训练参数,如迭代次数、目标训练误差和学习率。

% 设置训练参数
% 包括训练的迭代次数、训练误差目标和学习率
net.trainParam.epochs = 1000; % 迭代次数
net.trainParam.goal = 1e-6; % 目标训练误差
net.trainParam.lr = 0.01; % 学习率

训练神经网络

        使用train函数对网络进行训练。这个过程可能需要一些时间,具体取决于数据集的大小和网络的复杂性。

% 开始训练
% 使用train函数对网络进行训练
net = train(net, P_train_norm, T_train_encoded);

测试与性能评价

        训练完成后,我们使用测试集来评估模型的性能。我们还将计算训练集和测试集的准确率。

% 进行测试
% 使用sim函数对训练集和测试集进行模拟
T_train_sim = sim(net, P_train_norm);
T_test_sim = sim(net, P_test_norm);% 反归一化处理
% 将模拟结果从独热编码转换回原始类别
T_train_decoded = vec2ind(T_train_sim);
T_test_decoded = vec2ind(T_test_sim);% 性能评价
% 计算训练集和测试集的准确率
trainAccuracy = sum(T_train_decoded == T_train) / numTrainSamples * 100;
testAccuracy = sum(T_test_decoded == T_test) / numTestSamples * 100;% 打印性能评价结果
fprintf('训练集准确率: %.2f%%\n', trainAccuracy);
fprintf('测试集准确率: %.2f%%\n', testAccuracy);

效果展示

这篇关于使用MATLAB的BP神经网络进行数据分类任务(简单版)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1044251

相关文章

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

oracle DBMS_SQL.PARSE的使用方法和示例

《oracleDBMS_SQL.PARSE的使用方法和示例》DBMS_SQL是Oracle数据库中的一个强大包,用于动态构建和执行SQL语句,DBMS_SQL.PARSE过程解析SQL语句或PL/S... 目录语法示例注意事项DBMS_SQL 是 oracle 数据库中的一个强大包,它允许动态地构建和执行

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为