本文主要是介绍Permutation Test 置换检验(转),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
Permutation Test 置换检验显著性检验通常可以告诉我们一个观测值是否是有效的,例如检测两组样本均值差异的假设检验可以告诉我们这两组样本的均值是否相等(或者那个均值更大)。我们在实验中经常会因为各种问题(时间、经费、人力、物力)得到一些小样本结果,如果我们想知道这些小样本结果的总体是什么样子的,就需要用到置换检验。
Permutation test 置换检验是Fisher于20世纪30年代提出的一种基于大量计算(computationally intensive),利用样本数据的全(或随机)排列,进行统计推断的方法,因其对总体分布自由,应用较为广泛,特别适用于总体分布未知的小样本资料,以及某些难以用常规方法分析资料的假设检验问题。在具体使用上它和Bootstrap Methods类似,通过对样本进行顺序上的置换,重新计算统计检验量,构造经验分布,然后在此基础上求出P-value进行推断。
下面通过一个简单例子来介绍Permutation test的思想。
假设我们设计了一个实验来验证加入某种生长素后拟南芥的侧根数量会明显增加。A组是加入某种生长素后,拟南芥的侧根数量;B是不加生长素时,拟南芥的侧根数量(均为假定值)。
A组侧根数量(共12个数据):24 43 58 67 61 44 67 49 59 52 62
这篇关于Permutation Test 置换检验(转)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!