【因果推断python】24_倾向得分2

2024-06-09 03:04

本文主要是介绍【因果推断python】24_倾向得分2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

倾向加权

倾向得分估计


倾向加权

好的,我们得到了倾向得分。怎么办?就像我说过的,我们需要做的就是以此为条件。例如,我们可以运行一个线性回归,它仅以倾向得分为条件,而不是所有的 X。现在,让我们看一下只使用倾向得分而不使用其他任何东西的技术。这个想法是用倾向得分写出均值的条件差

E[Y|X,T=1]-E[Y|X,T=0]=E{\left[\frac Y{P(x)}|X,T=1\right]}P(x)-E{\left[\frac Y{(1-P(x))}|X,T=0\right]}(1-P(x))

我们可以进一步简化这一点,但让我们这样看一下,因为它让我们对倾向得分的作用有了一些很好的直觉。第一项是估计 Y1。它应用于所有接受干预的对象,并按接受干预的逆概率对它们的权重进行缩放。这样做的目的是使那些接受干预的可能性非常低的人权重增加。想想看,这是有道理的,对吧?如果某人接受干预的可能性很低,那么该人看起来就像未经干预的人。然而,同一个人受到了干预。这一定很有趣。我们有一个看起来像未经干预的被干预对象,因此我们将给予该实体较高的权重。这样做的目的是创建一个与原始全样本相同大小的群体,但每个人都受到干预。出于同样的原因,另一个术语着眼于未经干预的人,并赋予那些看起来像经过干预的人很高的权重。这个估计器被称为干预加权的逆概率(IPTW),因为它通过接受除它所接受的干预之外的某种其他影响的概率来缩放每个单元的权重。

在下面在图片中,就展示了这种加权的作用。

左上图显示了原始数据。蓝点是未干预的,红点是干预过的。底部图显示了倾向得分 P(x)。注意它是如何在 0 和 1 之间的,并且随着 X 的增加而增长。最后,右上图是加权后的数据。注意更靠左的红色(处理过的)(倾向得分较低)的权重更高。同样,右侧的蓝色图也具有更高的权重。现在我们有了直觉,我们可以将上面的术语简化为E{\left[Y\frac{T-P(x)}{P(x)(1-P(x))}|X\right]}如果我们对 X 进行积分,它就会成为我们的倾向得分加权估计量。E\bigg[Y\frac{T-P(x)}{P(x)(1-P(x))}\bigg]

请注意,此估计器要求 P(x) 和 1−P(x)  大于零。换句话说,这意味着每个人都需要至少有一些机会接受干预和不接受干预。说明这一点的另一种方式是干预和未干预样本的分布需要重叠。这是因果推理的正值假设(positivity assumption)。它也具有直觉意义。如果干预和未干预的样本不重叠,这意味着它们非常不同,我将无法将一组的效果外推到另一组。这种推断并非不可能(回归做到了),但它非常危险。这就像在实验中测试一种新药,只有男性接受治疗,然后假设女性对它的反应同样好。

倾向得分估计

在一个理想的世界中,我们会有真实的倾向得分P(X)。 然而,在实践中,分配干预的机制是未知的,我们需要用对它的估计来替换真实的倾向得分 \hat{P}(x)。 这样做的一种常见方法是使用逻辑回归,但也可以使用其他机器学习方法,如梯度提升(尽管它需要一些额外的步骤来避免过度拟合)。

在这里,我将坚持逻辑回归。 这意味着我必须将数据集中的分类特征转换为假人。

categ = ["ethnicity", "gender", "school_urbanicity"]
cont = ["school_mindset", "school_achievement", "school_ethnic_minority", "school_poverty", "school_size"]data_with_categ = pd.concat([data.drop(columns=categ), # dataset without the categorical featurespd.get_dummies(data[categ], columns=categ, drop_first=False)# categorical features converted to dummies
], axis=1)print(data_with_categ.shape)(10391, 32)

现在让我们使用逻辑回归(logistic regression)来估计倾向得分。

from sklearn.linear_model import LogisticRegressionT = 'intervention'
Y = 'achievement_score'
X = data_with_categ.columns.drop(['schoolid', T, Y])ps_model = LogisticRegression(C=1e6).fit(data_with_categ[X], data_with_categ[T])data_ps = data.assign(propensity_score=ps_model.predict_proba(data_with_categ[X])[:, 1])data_ps[["intervention", "achievement_score", "propensity_score"]].head()

首先,我们可以确保倾向得分权重确实重建了每个人都得到干预的人群。 通过产生权重1/P(X),它创建了每个人都被对待的群体,并通过提供权重1/(1−P(X)),它创建了群体,其中 每个人都没有得到干预。

weight_t = 1/data_ps.query("intervention==1")["propensity_score"]
weight_nt = 1/(1-data_ps.query("intervention==0")["propensity_score"])
print("Original Sample Size", data.shape[0])
print("Treated Population Sample Size", sum(weight_t))
print("Untreated Population Sample Size", sum(weight_nt))
Original Sample Size 10391
Treated Population Sample Size 10388.604824722199
Untreated Population Sample Size 10391.4305248224

我们还可以使用倾向得分来找到混淆的证据。 如果人群中的一个细分群体的倾向得分高于另一个群体,这意味着不是随机的东西导致了干预。 如果同样的事情也导致了结果,我们就会感到困惑。 在我们的案例中,我们可以看到自称更有野心的学生也更有可能参加成长心态研讨会

sns.boxplot(x="success_expect", y="propensity_score", data=data_ps)
plt.title("Confounding Evidence");

我们还必须检查干预和未干预人群之间是否存在重叠。 为此,我们可以看到倾向得分在未干预者和被干预者上的经验分布。 查看下图,我们可以看到没有人的倾向得分为零,即使在倾向得分较低的区域,我们也可以找到接受干预和未接受干预的个体。 这就是我们所说的经过良好平衡的干预和未干预人群。

sns.distplot(data_ps.query("intervention==0")["propensity_score"], kde=False, label="Non Treated")
sns.distplot(data_ps.query("intervention==1")["propensity_score"], kde=False, label="Treated")
plt.title("Positivity Check")
plt.legend();

最后,我们可以使用倾向得分加权估计器来估计平均干预效果(ATE)。

weight = ((data_ps["intervention"]-data_ps["propensity_score"]) /(data_ps["propensity_score"]*(1-data_ps["propensity_score"])))y1 = sum(data_ps.query("intervention==1")["achievement_score"]*weight_t) / len(data)
y0 = sum(data_ps.query("intervention==0")["achievement_score"]*weight_nt) / len(data)ate = np.mean(weight * data_ps["achievement_score"])print("Y1:", y1)
print("Y0:", y0)
print("ATE", np.mean(weight * data_ps["achievement_score"]))
Y1: 0.2595774244866067
Y0: -0.12892090981713242
ATE 0.38849833430373715

倾向得分加权表示,就成就而言,我们应该期望接受干预的个体比未经干预的同伴高 0.38 个标准差。 我们还可以看到,如果没有人得到干预,我们应该期望成绩的总体水平比现在低 0.12 个标准差。 同样的道理,如果我们为每个人提供研讨会,我们应该期望一般成就水平高出 0.25 个标准差。 将此与我们通过简单比较干预和未干预得到的 0.47 ATE 估计值进行对比。 这证明我们的偏差确实是正向的,并且控制 X 让我们对成长心态的影响有了更适度的估计。

这篇关于【因果推断python】24_倾向得分2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1044062

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

HTML提交表单给python

python 代码 from flask import Flask, request, render_template, redirect, url_forapp = Flask(__name__)@app.route('/')def form():# 渲染表单页面return render_template('./index.html')@app.route('/submit_form',

Python QT实现A-star寻路算法

目录 1、界面使用方法 2、注意事项 3、补充说明 用Qt5搭建一个图形化测试寻路算法的测试环境。 1、界面使用方法 设定起点: 鼠标左键双击,设定红色的起点。左键双击设定起点,用红色标记。 设定终点: 鼠标右键双击,设定蓝色的终点。右键双击设定终点,用蓝色标记。 设置障碍点: 鼠标左键或者右键按着不放,拖动可以设置黑色的障碍点。按住左键或右键并拖动,设置一系列黑色障碍点

Python:豆瓣电影商业数据分析-爬取全数据【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】

**爬取豆瓣电影信息,分析近年电影行业的发展情况** 本文是完整的数据分析展现,代码有完整版,包含豆瓣电影爬取的具体方式【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】   最近MBA在学习《商业数据分析》,大实训作业给了数据要进行数据分析,所以先拿豆瓣电影练练手,网络上爬取豆瓣电影TOP250较多,但对于豆瓣电影全数据的爬取教程很少,所以我自己做一版。 目

【Python报错已解决】AttributeError: ‘list‘ object has no attribute ‘text‘

🎬 鸽芷咕:个人主页  🔥 个人专栏: 《C++干货基地》《粉丝福利》 ⛺️生活的理想,就是为了理想的生活! 文章目录 前言一、问题描述1.1 报错示例1.2 报错分析1.3 解决思路 二、解决方法2.1 方法一:检查属性名2.2 步骤二:访问列表元素的属性 三、其他解决方法四、总结 前言 在Python编程中,属性错误(At