【因果推断python】24_倾向得分2

2024-06-09 03:04

本文主要是介绍【因果推断python】24_倾向得分2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

倾向加权

倾向得分估计


倾向加权

好的,我们得到了倾向得分。怎么办?就像我说过的,我们需要做的就是以此为条件。例如,我们可以运行一个线性回归,它仅以倾向得分为条件,而不是所有的 X。现在,让我们看一下只使用倾向得分而不使用其他任何东西的技术。这个想法是用倾向得分写出均值的条件差

E[Y|X,T=1]-E[Y|X,T=0]=E{\left[\frac Y{P(x)}|X,T=1\right]}P(x)-E{\left[\frac Y{(1-P(x))}|X,T=0\right]}(1-P(x))

我们可以进一步简化这一点,但让我们这样看一下,因为它让我们对倾向得分的作用有了一些很好的直觉。第一项是估计 Y1。它应用于所有接受干预的对象,并按接受干预的逆概率对它们的权重进行缩放。这样做的目的是使那些接受干预的可能性非常低的人权重增加。想想看,这是有道理的,对吧?如果某人接受干预的可能性很低,那么该人看起来就像未经干预的人。然而,同一个人受到了干预。这一定很有趣。我们有一个看起来像未经干预的被干预对象,因此我们将给予该实体较高的权重。这样做的目的是创建一个与原始全样本相同大小的群体,但每个人都受到干预。出于同样的原因,另一个术语着眼于未经干预的人,并赋予那些看起来像经过干预的人很高的权重。这个估计器被称为干预加权的逆概率(IPTW),因为它通过接受除它所接受的干预之外的某种其他影响的概率来缩放每个单元的权重。

在下面在图片中,就展示了这种加权的作用。

左上图显示了原始数据。蓝点是未干预的,红点是干预过的。底部图显示了倾向得分 P(x)。注意它是如何在 0 和 1 之间的,并且随着 X 的增加而增长。最后,右上图是加权后的数据。注意更靠左的红色(处理过的)(倾向得分较低)的权重更高。同样,右侧的蓝色图也具有更高的权重。现在我们有了直觉,我们可以将上面的术语简化为E{\left[Y\frac{T-P(x)}{P(x)(1-P(x))}|X\right]}如果我们对 X 进行积分,它就会成为我们的倾向得分加权估计量。E\bigg[Y\frac{T-P(x)}{P(x)(1-P(x))}\bigg]

请注意,此估计器要求 P(x) 和 1−P(x)  大于零。换句话说,这意味着每个人都需要至少有一些机会接受干预和不接受干预。说明这一点的另一种方式是干预和未干预样本的分布需要重叠。这是因果推理的正值假设(positivity assumption)。它也具有直觉意义。如果干预和未干预的样本不重叠,这意味着它们非常不同,我将无法将一组的效果外推到另一组。这种推断并非不可能(回归做到了),但它非常危险。这就像在实验中测试一种新药,只有男性接受治疗,然后假设女性对它的反应同样好。

倾向得分估计

在一个理想的世界中,我们会有真实的倾向得分P(X)。 然而,在实践中,分配干预的机制是未知的,我们需要用对它的估计来替换真实的倾向得分 \hat{P}(x)。 这样做的一种常见方法是使用逻辑回归,但也可以使用其他机器学习方法,如梯度提升(尽管它需要一些额外的步骤来避免过度拟合)。

在这里,我将坚持逻辑回归。 这意味着我必须将数据集中的分类特征转换为假人。

categ = ["ethnicity", "gender", "school_urbanicity"]
cont = ["school_mindset", "school_achievement", "school_ethnic_minority", "school_poverty", "school_size"]data_with_categ = pd.concat([data.drop(columns=categ), # dataset without the categorical featurespd.get_dummies(data[categ], columns=categ, drop_first=False)# categorical features converted to dummies
], axis=1)print(data_with_categ.shape)(10391, 32)

现在让我们使用逻辑回归(logistic regression)来估计倾向得分。

from sklearn.linear_model import LogisticRegressionT = 'intervention'
Y = 'achievement_score'
X = data_with_categ.columns.drop(['schoolid', T, Y])ps_model = LogisticRegression(C=1e6).fit(data_with_categ[X], data_with_categ[T])data_ps = data.assign(propensity_score=ps_model.predict_proba(data_with_categ[X])[:, 1])data_ps[["intervention", "achievement_score", "propensity_score"]].head()

首先,我们可以确保倾向得分权重确实重建了每个人都得到干预的人群。 通过产生权重1/P(X),它创建了每个人都被对待的群体,并通过提供权重1/(1−P(X)),它创建了群体,其中 每个人都没有得到干预。

weight_t = 1/data_ps.query("intervention==1")["propensity_score"]
weight_nt = 1/(1-data_ps.query("intervention==0")["propensity_score"])
print("Original Sample Size", data.shape[0])
print("Treated Population Sample Size", sum(weight_t))
print("Untreated Population Sample Size", sum(weight_nt))
Original Sample Size 10391
Treated Population Sample Size 10388.604824722199
Untreated Population Sample Size 10391.4305248224

我们还可以使用倾向得分来找到混淆的证据。 如果人群中的一个细分群体的倾向得分高于另一个群体,这意味着不是随机的东西导致了干预。 如果同样的事情也导致了结果,我们就会感到困惑。 在我们的案例中,我们可以看到自称更有野心的学生也更有可能参加成长心态研讨会

sns.boxplot(x="success_expect", y="propensity_score", data=data_ps)
plt.title("Confounding Evidence");

我们还必须检查干预和未干预人群之间是否存在重叠。 为此,我们可以看到倾向得分在未干预者和被干预者上的经验分布。 查看下图,我们可以看到没有人的倾向得分为零,即使在倾向得分较低的区域,我们也可以找到接受干预和未接受干预的个体。 这就是我们所说的经过良好平衡的干预和未干预人群。

sns.distplot(data_ps.query("intervention==0")["propensity_score"], kde=False, label="Non Treated")
sns.distplot(data_ps.query("intervention==1")["propensity_score"], kde=False, label="Treated")
plt.title("Positivity Check")
plt.legend();

最后,我们可以使用倾向得分加权估计器来估计平均干预效果(ATE)。

weight = ((data_ps["intervention"]-data_ps["propensity_score"]) /(data_ps["propensity_score"]*(1-data_ps["propensity_score"])))y1 = sum(data_ps.query("intervention==1")["achievement_score"]*weight_t) / len(data)
y0 = sum(data_ps.query("intervention==0")["achievement_score"]*weight_nt) / len(data)ate = np.mean(weight * data_ps["achievement_score"])print("Y1:", y1)
print("Y0:", y0)
print("ATE", np.mean(weight * data_ps["achievement_score"]))
Y1: 0.2595774244866067
Y0: -0.12892090981713242
ATE 0.38849833430373715

倾向得分加权表示,就成就而言,我们应该期望接受干预的个体比未经干预的同伴高 0.38 个标准差。 我们还可以看到,如果没有人得到干预,我们应该期望成绩的总体水平比现在低 0.12 个标准差。 同样的道理,如果我们为每个人提供研讨会,我们应该期望一般成就水平高出 0.25 个标准差。 将此与我们通过简单比较干预和未干预得到的 0.47 ATE 估计值进行对比。 这证明我们的偏差确实是正向的,并且控制 X 让我们对成长心态的影响有了更适度的估计。

这篇关于【因果推断python】24_倾向得分2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1044062

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(