聊一聊大数据需求的流程

2024-06-09 02:52
文章标签 数据 流程 需求 聊一聊

本文主要是介绍聊一聊大数据需求的流程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大致的流程:需求对接、口径梳理、数据开发、任务发布、任务监控、任务保障

大数据需求种类.png

流程图

@startuml
skinparam packageStyle rectangleactor 需求方
participant 数据BP as 数据组
participant 离线数仓
participant 实时数仓需求方 -> 数据组: 提出需求
数据组 -> 数据组: 分析需求
数据组 -> 离线数仓: 确认指标\n口径&数据源确认
离线数仓 -> 实时数仓: 数据探查
实时数仓 -> 离线数仓: 接入数据开发验证
离线数仓 -> 实时数仓: 数据验收
实时数仓 -> 离线数仓: 数据上线note right: 发起口径变更
离线数仓 -> 实时数仓: 判断是否涉及实时
alt 是
实时数仓 -> 离线数仓: 拉齐离线实时口径
end
alt 否
离线数仓 -> 离线数仓: 口径变更
end离线数仓 -> 离线数仓: 离线变更
离线数仓 -> 实时数仓: 实时变更
实时数仓 -> 实时数仓: 数据验收
实时数仓 -> 实时数仓: 数据上线
@enduml

渲染过之后,长这样子了

数据需求-2024-06-08-14-35-57.png

大数据开发是一个复杂而系统性的过程,涉及多个环节和角色。以下是各个环节的详细介绍:

1. 需求对接

需求对接是大数据开发的起点,主要包括以下几个步骤:

  • 需求收集:与业务部门或客户沟通,明确他们的数据需求。例如,需要哪些数据、数据的来源、数据处理后的输出形式、数据的更新频率等。
  • 需求分析:分析需求的可行性,评估技术实现的难度,估算所需的时间和资源。
  • 需求确认:与业务部门或客户确认需求细节,确保双方对需求有一致的理解。
示例1:零售行业的需求对接
  • 需求收集
    • 业务背景:某零售连锁店希望分析会员消费数据,以便进行精准营销。
    • 沟通内容
      • 数据需求:会员的购买历史、优惠券使用记录、反馈评论等。
      • 数据来源:POS系统、会员管理系统、在线购物平台。
      • 输出形式:个性化营销方案、促销活动推荐。
      • 更新频率:每周更新一次。
  • 需求分析
    • 可行性分析:数据获取和处理的复杂性,数据量的大小,对数据实时性的要求。
    • 资源估算:预计需要1个月时间,涉及1名数据工程师、1名数据分析师。
  • 需求确认
    • 细节确认:与营销部门详细讨论和确认每个数据字段和分析指标,确定数据的处理流程和输出方式。
    • 确认文档:编写需求文档并获得相关部门签字确认。
      大数据需求.png

2. 口径梳理

口径梳理是指对数据指标、维度等进行定义和规范化,以确保数据的一致性和准确性。具体步骤包括:

  • 定义数据口径:明确数据指标的计算方法、维度的划分方式、数据的来源等。
  • 口径文档:编写详细的口径文档,记录数据口径的定义和规则,以便后续开发和维护。
  • 沟通确认:与相关部门沟通口径定义,确保所有人对口径的理解一致。

3. 数据开发

数据开发是整个过程的核心环节,涉及数据的获取、处理和存储。具体步骤包括:

  • 数据采集:从各种数据源(如数据库、日志文件、API等)获取原始数据。
  • 数据清洗:对原始数据进行清洗,处理缺失值、重复数据、异常值等问题。
  • 数据转换:根据需求对数据进行转换和加工,如聚合、分组、计算等。
  • 数据存储:将处理后的数据存储到数据仓库或数据库中,以便后续使用。

4. 任务发布

任务发布是指将开发完成的数据处理任务部署到生产环境中,通常包括以下步骤:

  • 测试:在测试环境中对数据处理任务进行测试,确保其能正确运行。
  • 部署:将经过测试的数据处理任务部署到生产环境中。
  • 发布:正式发布数据处理任务,并通知相关部门或客户。

5. 任务监控

任务监控是保证数据处理任务正常运行的重要环节,具体包括:

  • 实时监控:通过监控系统实时监控任务的运行状态,及时发现和处理异常。
  • 日志分析:通过分析任务的运行日志,了解任务的执行情况,发现潜在问题。
  • 告警机制:设置告警机制,当任务运行出现异常时,及时通知相关人员处理。

6. 任务保障

任务保障是确保数据处理任务稳定运行的一系列措施,包括:

  • 备份和恢复:定期备份数据和任务配置,确保在发生故障时能快速恢复。
  • 容错机制:设计任务的容错机制,如任务失败时自动重试、任务失败时的应急预案等。
  • 性能优化:对数据处理任务进行性能优化,提高任务的执行效率,减少资源消耗。
  • 定期巡检:定期对数据处理任务进行巡检,发现并解决潜在问题,确保任务的长期稳定运行。

以上是大数据开发各个环节的详细介绍,每个环节都至关重要,只有各个环节紧密配合,才能确保大数据开发工作的顺利进行和最终数据产品的高质量交付

需求流程.png

这篇关于聊一聊大数据需求的流程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1044050

相关文章

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解

Oracle存储过程里操作BLOB的字节数据的办法

《Oracle存储过程里操作BLOB的字节数据的办法》该篇文章介绍了如何在Oracle存储过程中操作BLOB的字节数据,作者研究了如何获取BLOB的字节长度、如何使用DBMS_LOB包进行BLOB操作... 目录一、缘由二、办法2.1 基本操作2.2 DBMS_LOB包2.3 字节级操作与RAW数据类型2.

MySQL使用binlog2sql工具实现在线恢复数据功能

《MySQL使用binlog2sql工具实现在线恢复数据功能》binlog2sql是大众点评开源的一款用于解析MySQLbinlog的工具,根据不同选项,可以得到原始SQL、回滚SQL等,下面我们就来... 目录背景目标步骤准备工作恢复数据结果验证结论背景生产数据库执行 SQL 脚本,一般会经过正规的审批