CUGB图论专场:D - Command Network(最小树形图:朱刘算法)

2024-06-08 23:58

本文主要是介绍CUGB图论专场:D - Command Network(最小树形图:朱刘算法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

D - Command Network
Time Limit:1000MS     Memory Limit:131072KB     64bit IO Format:%I64d & %I64u
Submit  Status

Description

After a long lasting war on words, a war on arms finally breaks out between littleken’s and KnuthOcean’s kingdoms. A sudden and violent assault by KnuthOcean’s force has rendered a total failure of littleken’s command network. A provisional network must be built immediately. littleken orders snoopy to take charge of the project.

With the situation studied to every detail, snoopy believes that the most urgent point is to enable littenken’s commands to reach every disconnected node in the destroyed network and decides on a plan to build a unidirectional communication network. The nodes are distributed on a plane. If littleken’s commands are to be able to be delivered directly from a node A to another node B, a wire will have to be built along the straight line segment connecting the two nodes. Since it’s in wartime, not between all pairs of nodes can wires be built. snoopy wants the plan to require the shortest total length of wires so that the construction can be done very soon.

Input

The input contains several test cases. Each test case starts with a line containing two integer N (N ≤ 100), the number of nodes in the destroyed network, and M (M ≤ 104), the number of pairs of nodes between which a wire can be built. The next N lines each contain an ordered pair xi and yi, giving the Cartesian coordinates of the nodes. Then follow M lines each containing two integers i and j between 1 and N (inclusive) meaning a wire can be built between node i and node j for unidirectional command delivery from the former to the latter. littleken’s headquarter is always located at node 1. Process to end of file.

Output

For each test case, output exactly one line containing the shortest total length of wires to two digits past the decimal point. In the cases that such a network does not exist, just output ‘poor snoopy’.

Sample Input

4 6
0 6
4 6
0 0
7 20
1 2
1 3
2 3
3 4
3 1
3 2
4 3
0 0
1 0
0 1
1 2
1 3
4 1
2 3

Sample Output

31.19
poor snoopy

参考芳哥和魏神的博客:http://blog.csdn.net/wsniyufang/article/details/6747392   和  http://blog.csdn.net/sdj222555/article/details/7459738。

思路:最小树形图,就是给有向带权图中指定一个特殊的点root,求一棵以root为根的有向生成树T,并且T中所有边的总权值最小。最小树形图的第一个算法是 1965年朱永津和刘振宏提出的复杂度为O(VE)的算法。

因为刚开始接触有向图的代码,所以看了一下午,理解了一下午才理解……不过收获也挺大的,继续默默努力吧……

自己的理解:刚开始自己并未理解最小树形图的概念,感觉和平常的生成树也没多大差别。不过深入研究以后确实差别挺大的。我们以前做的生成树是无向图,求的树是无环的,而这个最小树形图可以有环,解决的办法就是把环变成结点。但是如果把环变成结点的话,那边的权值就得改变了,不然求的树就不是原先的树了。设这个环中指向u的边权是in[u],那么对于每条从u出发的边(u, i, w),在新图中连接(new, i, w)的边,其中new为新加的人工顶点; 对于每条进入u的边(i, u, w),在新图中建立边(i, new, w-in[u])的边,即用w-in[u]更新边权值。还有一些理解有代码中会有注释!感觉如果把所有的环都变成结点以后,所求的最小树形图其实就是一条线把这些结点联结起来,求的就是这条线的最小值。

用到的思想及算法等:有向图的强连通分量,缩点法。

#include <iostream>
#include <cstdio>
#include <fstream>
#include <algorithm>
#include <cmath>
#include <deque>
#include <vector>
#include <list>
#include <queue>
#include <string>
#include <cstring>
#include <map>
#define PI acos(-1.0)
#define mem(a,b) memset(a,b,sizeof(a))
#define sca(a) scanf("%d",&a)
#define M 102
#define INF 10000000
using namespace std;
typedef long long ll;
struct Point
{double x,y;
}p[M];
struct node
{int u,v;   //边的两端结点double value;  //边权值
}e[M*M];
int pre[M],newnode[M],visit[M],n,m,i; //前向结点数组,新结点指向数组,访问数组
double in[M];   //边权值数组
double dist(Point a,Point b)  //坐标两点之间的距离
{return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
double zhuliu(int root,int n1,int m1)
{double ans=0;   //因为把环删除后其边权值是当前和与原先和之和,所以得在循环外定义int u,v;while(1){//(1).找最小边放入集合for(i=0;i<n1;i++)in[i]=INF;for(i=0;i<m1;i++){u=e[i].u; v=e[i].v;if(e[i].value<in[v]&&u!=v){pre[v]=u;  //每次都找最小边进入集合,以达最优解in[v]=e[i].value;}}for(i=0;i<n1;i++)if(in[i]==INF&&i!=root) return -1; //除了根以外还有别的结点没有入边,则说明没有连通,无最小树形图//(2).找环,若有环,则生成新结点,强连通分量,即环int New=0; //新结点还是从0开始mem(newnode,-1);mem(visit,-1);in[root]=0;for(i=0;i<n1;i++)  //寻找每个结点是否有环{ans+=in[i]; v=i;while(visit[v]!=i&&newnode[v]==-1&&v!=root) //每个点寻找其前向点,要么最终寻找至根部,要么找到一个环{visit[v]=i;v=pre[v];}if(v!=root&&newnode[v]==-1)  //把环缩成一个点,缩点法{for(u=pre[v];u!=v;u=pre[u])newnode[u]=New;newnode[v]=New++;}}if(New==0) break;  //如果New无变化,当然就无环啦for(i=0;i<n1;i++)if(newnode[i]==-1) newnode[i]=New++;//(3).建立新图,即把环缩成点,然后指向和边权值也随之改变for(i=0;i<m1;i++){u=e[i].u; v=e[i].v;e[i].u=newnode[u];e[i].v=newnode[v];if(newnode[u]!=newnode[v]) e[i].value-=in[v]; //两个不同的结点之间的边权值改变}n1=New;root=newnode[root];  //结点更新之后,根结点可能有环而改变,所以根结点也要更新}return ans;
}
int main()
{double ans;while(~scanf("%d%d",&n,&m)){for(i=0;i<n;i++)scanf("%lf%lf",&p[i].x,&p[i].y);for(i=0;i<m;i++){scanf("%d%d", &e[i].u, &e[i].v);e[i].u--; e[i].v--; //结点从0开始if(e[i].u != e[i].v)e[i].value=dist(p[e[i].u],p[e[i].v]);else e[i].value=INF; //结点相同就是自环,则要去除自环}ans=zhuliu(0,n,m);if(ans==-1) printf("poor snoopy\n");else printf("%.2f\n", ans);}return 0;
}




这篇关于CUGB图论专场:D - Command Network(最小树形图:朱刘算法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1043682

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖