基于深度学习的在线选修课程推荐系统

2024-06-08 22:28

本文主要是介绍基于深度学习的在线选修课程推荐系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于深度学习的在线选修课程推荐系统

1、效果图

点我查看Demo
在这里插入图片描述

2、功能

可联系我--(1257309054)
登录注册、点赞收藏、评分评论,课程推荐,热门课程,个人中心,可视化,后台管理,课程选修

3、核心推荐代码

使用Keras框架实现一个简单的深度学习推荐算法。Keras是建立在Python之上的高级神经网络API。Keras提供了一种简单、快速的方式来构建和训练深度学习模型。

​ 根据用户对书籍的评分表,使用Emmbeding深度学习训练得到一个模型,预测用户可能评分高的书籍,并把前5本推荐给用户。

Emmbeding是从离散对象(如书籍 ID)到连续值向量的映射。
这可用于查找离散对象之间的相似性。
Emmbeding向量是低维的,并在训练网络时得到更新。
设计一个模型,将用户id作为用户向量,物品id作为物品向量。
分别Emmbeding两个向量,再Concat连接起来,最后加上3个全连接层构成模型,进行训练。
使用adam优化器,用均方差mse来衡量预测评分与真实评分之间的误差

在这里插入图片描述

4、算法流程

1、从数据库中读取评分表信息并转成二维数组
2、数据预处理,把用户id,物品id映射成顺序字典
3、统计用户数量、物品数量
4、划分训练集与测试集
5、构建Embedding模型并进行数据训练得到模型
6、调用模型预测评分高的物品并推荐给用户

5、主体核心代码

 -*- coding: utf-8 -*-"""
@contact: 微信 1257309054
@file: recommend_keras.py
@time: 2024/6/8 16:21
@author: LDC
使用Keras框架实现一个深度学习推荐算法
"""import os
import django
from django.conf import settingsos.environ["DJANGO_SETTINGS_MODULE"] = "course_manager.settings"
django.setup()import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import pymysql
from sklearn.model_selection import train_test_split
import warningswarnings.filterwarnings('ignore')from course.models import UserSelectTypes, CourseInfo, RateCourse
from keras.layers import Input, Embedding, Flatten, Dot, Dense, Concatenate, Dropout
from keras.models import Modelfrom keras.models import load_modeldef get_select_tag_course(user_id, course_id=None):# 获取用户注册时选择的课程类别各返回10门课程category_ids = []us = UserSelectTypes.objects.get(user_id=user_id)for category in us.category.all():category_ids.append(category.id)unrec = []if course_id:unrec.append(course_id)course_list = CourseInfo.objects.filter(tags__in=category_ids).exclude(id__in=unrec).distinct().order_by("-collect_num")[:10]return course_listdef get_data():'''从数据库获取数据'''conn = pymysql.connect(host=settings.DATABASE_HOST,user=settings.DATABASE_USER,password=settings.DATABASE_PASS,database=settings.DATABASE_NAME,charset='utf8mb4',use_unicode=True)# 选择评分大于等于3的课程sql_cmd = 'SELECT course_id, user_id,mark FROM rate_course where mark >=3'dataset = pd.read_sql(sql=sql_cmd, con=conn)conn.close()return datasetdef preprocessing(dataset):'''数据预处理'''course_val_counts = dataset.course_id.value_counts()course_map_dict = {}  # 课程字典for i in range(len(course_val_counts)):course_map_dict[course_val_counts.index[i]] = i# print(map_dict)dataset["course_id"] = dataset["course_id"].map(course_map_dict)user_id_val_counts = dataset.user_id.value_counts()# 映射字典user_id_map_dict = {}  # 用户字典for i in range(len(user_id_val_counts)):user_id_map_dict[user_id_val_counts.index[i]] = i# 将User_ID映射到一串字典dataset["user_id"] = dataset["user_id"].map(user_id_map_dict)return dataset, course_map_dict, user_id_map_dictdef train_model():'''训练模型'''dataset = get_data()  # 获取数据dataset, course_map_dict, user_id_map_dict = preprocessing(dataset)  # 数据预处理n_users = len(dataset.user_id.unique())  # 统计用户数量print('n_users', n_users)n_courses = len(dataset.course_id.unique())  # 统计课程数量print('n_courses', n_courses)# 划分训练集与测试集train, test = train_test_split(dataset, test_size=0.2, random_state=42)# 开始训练# creating course embedding pathcourse_input = Input(shape=[1], name="course-Input")course_embedding = Embedding(n_courses + 1, 5, name="course-Embedding")(course_input)Dropout(0.2)course_vec = Flatten(name="Flatten-courses")(course_embedding)# creating user embedding pathuser_input = Input(shape=[1], name="User-Input")user_embedding = Embedding(n_users + 1, 5, name="User-Embedding")(user_input)Dropout(0.2)user_vec = Flatten(name="Flatten-Users")(user_embedding)# concatenate featuresconc = Concatenate()([course_vec, user_vec])# add fully-connected-layersfc1 = Dense(128, activation='relu')(conc)Dropout(0.2)fc2 = Dense(32, activation='relu')(fc1)out = Dense(1)(fc2)# Create model and compile itmodel2 = Model([user_input, course_input], out)model2.compile('adam', 'mean_squared_error')history = model2.fit([train.user_id, train.course_id], train.mark, epochs=10, verbose=1)model2.save('regression_model2.h5')loss = history.history['loss']  # 训练集损失# 显示损失图像# plt.plot(loss, 'r')# plt.title('Training loss')# plt.xlabel("Epochs")# plt.ylabel("Loss")# plt.show()print('训练完成')def predict(user_id, dataset):'''将预测评分高的课程推荐给该用户user_id'''model2 = load_model('regression_model2.h5')'''先拿到所有的课程,并去重成为course_data。再添加一个和course_data长度相等的用户列表user,不过这里的user列表中的元素全是1,因为:预测第1个用户对所有课程的评分,再将预测评分高的课程推荐给该用户。'''course_data = np.array(list(set(dataset.course_id)))user = np.array([user_id for i in range(len(course_data))])predictions = model2.predict([user, course_data])# 更换列->行predictions = np.array([a[0] for a in predictions])# 根据原array,取其中数值从大到小的索引,再只取前top10recommended_course_ids = (-predictions).argsort()[:8]return recommended_course_idsdef embedding_main(user_id, course_id=None, is_rec_list=False):'''1、获取用户评分大于等于3的课程数据2、数据预处理:把数据映射成用户向量Embedding,课程向量Embedding3、划分训练集与测试集:使用二八法则随机划分,80%的数据用来训练,20%的数据用来测试4、训练模型:分别Emmbeding两个向量,再Concat连接起来,最后加上3个全连接层构成模型,进行训练5、模型评估:通过查看训练集损失函数来查看模型优劣6、预测推荐:对用户评分过的课程进行模型预测,把预测评分高的课程推荐给用户user_id: 用户idcourse_id: 用户已经评分过的课程id,需要在推荐列表中去除is_rec_list: 值为True:返回推荐[用户-评分]列表,值为False:返回推荐的课程列表'''dataset = get_data()  # 获取数据# print(dataset.head())if user_id not in dataset.user_id.unique():# 用户未进行评分则推荐注册时选择的课程类型print('用户未进行评分则推荐注册时选择的课程类型')if is_rec_list:return []# 推荐列表为空,按用户注册时选择的课程类别各返回10门return get_select_tag_course(user_id, course_id)dataset, course_map_dict, user_id_map_dict = preprocessing(dataset)# user_id需要转换为映射后的user_id传到predict函数中predict_course_ids = predict(user_id_map_dict[user_id], dataset)  # 预测的课程Idrecommend_list = []  # 最后推荐的课程id# 把映射的值转为真正的课程idfor course_id in predict_course_ids:for k, v in course_map_dict.items():if course_id == v:recommend_list.append(k)print('keras_recommended_course_ids深度学习推荐列表', recommend_list)if not recommend_list:# 推荐列表为空,且is_rec_list: 值为True:返回推荐[用户-评分]列表if is_rec_list:return []# 推荐列表为空,按用户注册时选择的课程类别return get_select_tag_course(user_id, course_id)if is_rec_list:# 推荐列表不为空,且且is_rec_list: 值为True:返回推荐[用户-评分]列表return recommend_listunres = []if course_id:unres.append(course_id)# 过滤掉用户已评分的数据already_mark_ids = [d['course_id'] for d in RateCourse.objects.filter(user_id=user_id).values('course_id')]unrecommend = list(set(unres + already_mark_ids))if course_id and course_id not in unrecommend:unrecommend.append(course_id)course_list = CourseInfo.objects.filter(id__in=recommend_list).exclude(id__in=unrecommend).distinct().order_by("-collect_num")return course_listif __name__ == '__main__':train_model()  # 训练模型embedding_main(2)  # 调用模型

6、输出效果

Epoch 1/10
1/1 [==============================] - 2s 2s/step - loss: 25.0221
Epoch 2/10
1/1 [==============================] - 0s 8ms/step - loss: 24.9007
Epoch 3/10
1/1 [==============================] - 0s 7ms/step - loss: 24.8011
Epoch 4/10
1/1 [==============================] - 0s 6ms/step - loss: 24.7061
Epoch 5/10
1/1 [==============================] - 0s 3ms/step - loss: 24.6062
Epoch 6/10
1/1 [==============================] - 0s 4ms/step - loss: 24.5012
Epoch 7/10
1/1 [==============================] - 0s 5ms/step - loss: 24.3921
Epoch 8/10
1/1 [==============================] - 0s 5ms/step - loss: 24.2739
Epoch 9/10
1/1 [==============================] - 0s 3ms/step - loss: 24.1532
Epoch 10/10
1/1 [==============================] - 0s 5ms/step - loss: 24.0253
训练完成
1/1 [==============================] - 0s 200ms/step
keras_recommended_course_ids深度学习推荐列表 [61, 98, 71, 81, 97]

这篇关于基于深度学习的在线选修课程推荐系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1043485

相关文章

Nginx配置系统服务&设置环境变量方式

《Nginx配置系统服务&设置环境变量方式》本文介绍了如何将Nginx配置为系统服务并设置环境变量,以便更方便地对Nginx进行操作,通过配置系统服务,可以使用系统命令来启动、停止或重新加载Nginx... 目录1.Nginx操作问题2.配置系统服android务3.设置环境变量总结1.Nginx操作问题

Vue项目的甘特图组件之dhtmlx-gantt使用教程和实现效果展示(推荐)

《Vue项目的甘特图组件之dhtmlx-gantt使用教程和实现效果展示(推荐)》文章介绍了如何使用dhtmlx-gantt组件来实现公司的甘特图需求,并提供了一个简单的Vue组件示例,文章还分享了一... 目录一、首先 npm 安装插件二、创建一个vue组件三、业务页面内 引用自定义组件:四、dhtmlx

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

CSS3 最强二维布局系统之Grid 网格布局

《CSS3最强二维布局系统之Grid网格布局》CS3的Grid网格布局是目前最强的二维布局系统,可以同时对列和行进行处理,将网页划分成一个个网格,可以任意组合不同的网格,做出各种各样的布局,本文介... 深入学习 css3 目前最强大的布局系统 Grid 网格布局Grid 网格布局的基本认识Grid 网

前端 CSS 动态设置样式::class、:style 等技巧(推荐)

《前端CSS动态设置样式::class、:style等技巧(推荐)》:本文主要介绍了Vue.js中动态绑定类名和内联样式的两种方法:对象语法和数组语法,通过对象语法,可以根据条件动态切换类名或样式;通过数组语法,可以同时绑定多个类名或样式,此外,还可以结合计算属性来生成复杂的类名或样式对象,详细内容请阅读本文,希望能对你有所帮助...

Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)

《Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)》本文介绍了如何使用Python和Selenium结合ddddocr库实现图片验证码的识别和点击功能,感兴趣的朋友一起看... 目录1.获取图片2.目标识别3.背景坐标识别3.1 ddddocr3.2 打码平台4.坐标点击5.图

Java中实现订单超时自动取消功能(最新推荐)

《Java中实现订单超时自动取消功能(最新推荐)》本文介绍了Java中实现订单超时自动取消功能的几种方法,包括定时任务、JDK延迟队列、Redis过期监听、Redisson分布式延迟队列、Rocket... 目录1、定时任务2、JDK延迟队列 DelayQueue(1)定义实现Delayed接口的实体类 (

shell脚本自动删除30天以前的文件(最新推荐)

《shell脚本自动删除30天以前的文件(最新推荐)》该文章介绍了如何使用Shell脚本自动删除指定目录下30天以前的文件,并通过crontab设置定时任务,此外,还提供了如何使用Shell脚本删除E... 目录shell脚本自动删除30天以前的文件linux按照日期定时删除elasticsearch索引s

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动