详解 Flink 的时间语义和 watermark

2024-06-08 20:12

本文主要是介绍详解 Flink 的时间语义和 watermark,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、Flink 时间语义类型

在这里插入图片描述

  • Event Time:是事件创建的时间。它通常由事件中的时间戳描述,例如采集的日志数据中,每一条日志都会记录自己的生成时间,Flink 通过时间戳分配器访问事件时间戳
  • Ingestion Time :是数据进入 Flink 的时间
  • Processing Time:是每一个执行基于时间操作的算子的本地系统时间,与机器相关,默认的时间属性就是 Processing Time

二、EventTime 引入

Flink 默认是按照 ProcessingTime 来处理数据的

/**在 Flink 的流式处理中,绝大部分情况推荐使用 eventTime,一般只在 eventTime 无法使用时,才会被迫使用 ProcessingTime 或者 Ing estionTime 。使用 EventTime ,需要先引入 EventTime 的时间属性
*/
public class EventTimeTest {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();//引入 EvenetTime//TimeCharacteristic 是一个枚举类,有 ProcessingTime、IngestionTime 和 EventTime 三个属性env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);}
}

三、Watermark

1. 数据乱序情况

在这里插入图片描述

  • 正常情况下,Flink 接收到的事件应该要是按照事件的产生时间 (EventTime) 的先后顺序排列的
  • 实际情况下,事件从产生到进入 source 再到触发 operator,其中间是有一个过程和时间的,而且由于网络、分布式等原因会造成 Flink 接收到的事件的先后顺序不是严格按照事件的 EventTime 顺序排列的,即所谓的乱序数据
  • 乱序数据的问题会造成窗口触发关闭的时间混乱,计算不准确
  • Flink 处理乱序数据的机制:Watermark + allowedLateness + sideOutputLateData

2. Watermark 介绍

  • Watermark 是一种使用延迟触发 window 执行来处理乱序数据的机制
  • 原理:当设置 Watermark = t 时 (即延迟时长为 t),则 Flink 每一次都会获取已经到达的数据中的最大的 EventTime,然后判断 maxEventTime - t 是否等于某一个窗口的触发时间,如果相等则认为属于这个窗口的所有数据都已经到达,这个窗口被触发执行关闭,也可能存在数据丢失
  • 在数据有序的流中,相当于 Watermark = 0,即已经到达的数据中的最大的 EventTime 等于某一个窗口的触发时间,则这个窗口被触发执行关闭
  • 一般将 Watermark 设置为乱序数据流中最大的迟到时间差

3. Watermark 特点和行为

  • 水位线 (Watermark) 是作为一个特殊的数据插入到数据流中的一个标记
  • 水位线 (Watermark) 在 Flink 程序中是一个常量类,有一个时间戳属性,用来表示当前事件时间的进展
  • 水位线 (Watermark) 是基于数据的 EventTime 时间戳生成的
  • 水位线 (Watermark) 的时间戳必须单调递增,以确保任务的事件时间时钟一直向前推进

4. Watermark 在任务间的传递

任务并行度不为 1;Watermark 设置的位置越靠近 Source 端越好

在这里插入图片描述

  • 一个任务会接收上游多个并行任务的数据,也会向下游多个并行任务发送数据
  • 从上游多个并行任务接收 Watermark:使用 Partition WM 分别存储接收到的不同分区任务的 Watermark,并以其中最小的 Watermark 作为自己当前的事件时间
  • 向下游多个并行任务发送 Watermark:采取广播的分区策略,向下游的每一个任务都发送一份 Watermark,如果后续 Watermark 没有变更则不会重复发送

5. Watermark 引入

5.1 核心代码
/**方法签名:DataStream.assignTimestampsAndWatermarks(AssignerWithPeriodicWatermarks<T>)DataStream.assignTimestampsAndWatermarks(AssignerWithPunctuatedWatermarks<T>)参数:1.AssignerWithPeriodicWatermarks:继承 TimestampAssigner 接口,周期性的生成 watermark,常用实现类为:BoundedOutOfOrdernessTimestampExtractor 和 AscendingTimestampExtractor2.AssignerWithPunctuatedWatermarks:继承 TimestampAssigner 接口,间断式地生成 watermark
*/
public class WatermarkTest {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();//引入 EvenetTime       env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);DataStream<String> dataStream = env.socketTextStream("localhost", 7777);DataStream<SensorReading> inputStream = dataStream.map(new MapFunction<SensorReading>() {@Overridepublic SensorReading map(String value) throws Exception {String[] fields = value.split(",");return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2]));}});//有序数据设置事件时间戳(毫秒数)和watermark//不需要传递watermark延迟时间,默认是当前事件时间戳 - 1ms 作为watermarkinputStream.assignTimestampsAndWatermarks(new AscendingTimestampExtractor<SensorReading>() {@Overridepublic long extractAscendingTimestamp(SensorReading element) {return element.getTimestamp() * 1000L;}});//乱序数据设置事件时间戳(毫秒数)和watermark//BoundedOutOfOrdernessTimestampExtractor 构造方法必须传入watermark延迟时间//生成的watermark时间戳 = 当前所有事件的最大时间戳 - 延迟时间inputStream.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<SensorReading>(Time.seconds(2)) {@Overridepublic long extractTimestamp(SensorReading element) {return element.getTimestamp() * 1000L;}});env.execute();}
}
5.2 AssignerWithPeriodicWatermarks

系统会周期性地生成 watermark 并插入到数据流中,默认周期是 200 毫秒

/**设置watermark生成周期:env.getConfig.setAutoWatermarkInterval(milliseconds);产生watermark的逻辑:每隔 0.2 秒钟,Flink 会调用 AssignerWithPeriodicWatermarks 的 getCurrentWatermark() 方法获取一个时间戳,如果大于之前水位的时间戳,新的 watermark 会被插入到流中。这个检查保证了水位线是单调递增的。如果方法返回的时间戳小于等于之前水位的时间戳,则不会产生新的 watermark自定义watermark周期生成器:实现 AssignerWithPeriodicWatermarks 接口,并重写 getCurrentWatermark 和 extractTimestamp 方法
*/
public class MyPeriodicAssigner implements AssignerWithPeriodicWatermarks<SensorReading> {private Long bound = 60 * 1000L;  // watermark延迟时间private Long maxTs = Long.MIN_VALUE;  // 当前最大时间戳@Nullable@Overridepublic Watermark getCurrentWatermark() {return new Watermark(maxTs - bound);}@Overridepublic long extractTimestamp(SensorReading element, long previousElementTimestamp) {maxTs = Math.max(maxTs, element.getTimestamp()); //获取当前最大的事件时间戳return element.getTimestamp();}
}
5.3 AssignerWithPunctuatedWatermarks

间断式地生成 watermark,可以根据需要对每条数据进行条件判断筛选来确定是否生成 watermark

public class MyPunctuatedAssigner implements AssignerWithPunctuatedWatermarks<SensorReading> {private Long bound = 60 * 1000L;  // 延迟时间@Nullable@Overridepublic Watermark checkAndGetNextWatermark(SensorReading lastElement, long extractedTimestamp) {if(lastElement.getId().equals("sensor_1")) {return new Watermark(extractedTimestamp - bound);} else {return null;}}@Overridepublic long extractTimestamp(SensorReading element, long previousElementTimestamp) {return element.getTimestamp();}
}

四、EventTime 的 window 操作

1. 滚动时间窗口操作

/**需求:统计 15 秒内的最小温度值,设置 2 秒的延迟
*/
public class TumblingEventTimeWindowTest {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(1);env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);/*sensor_1,1547718199,35.8sensor_6,1547718201,15.4sensor_7,1547718202,6.7sensor_10,1547718205,38.1sensor_1,1547718207,36.3sensor_1,1547718209,32.8sensor_1,1547718212,37.1...*/DataStream<String> inputStream = env.socketTextStream("localhost", 7777);DataStream<SensorReading> dataStream = inputStream.map(new MapFunction<SensorReading>() {@Overridepublic SensorReading map(String value) {String[] fields = value.split(",");return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2]));}}).assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<SensorReading>(Time.seconds(2)) {@Overridepublic long extractTimestamp(SensorReading element) {return element.getTimestamp() * 1000L;}});//开窗聚合SingleOutputStreamOperator<SensorReading> minTempStream = dataStream.keyBy("id").timeWindow(Time.seconds(15)).minBy("temperature");minTempStream.print("minTemp");/**输出的结果分析:1.在接收到 sensor_1,1547718212,37.1 时,触发了一个窗口关闭,此时数据的 EventTime 为 1547718212,由于 watermark 延迟时间设置为 2,所以该窗口触发关闭的时间戳为 1547718212 - 2 = 1547718210,该窗口的范围为 [1547718195,1547718210)2.当前第一个窗口是 [1547718195,1547718210),其起始点的确定规则为:2.1 滚动时间窗口使用的窗口分配器为 TumblingEventTimeWindows 类2.2 TumblingEventTimeWindows 的 assignWindows 方法中调用 getWindowStartWithOffset 方法获取起始点2.3 getWindowStartWithOffset(timestamp, offset, windowSize):方法逻辑为 timestamp - (timestamp - offset + windowSize) % windowSize,默认 offset 为 0,所以最终得到的起始点应该是 windowSize 的整数倍,在本例中的起始点为 1547718199 - (1547718199-0+15)%15 = 15477181953.偏移量 offset:一般是用来处理不同时区的数据*/env.execute();}   
}

2. 迟到数据处理

/**需求:统计 15 秒内的最小温度值,设置 2 秒的延迟,并允许 1 分钟的迟到数据,1 分钟后的数据写入侧输出流
*/
public class TumblingEventTimeWindowDelayTest {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(1);env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);DataStream<String> inputStream = env.socketTextStream("localhost", 7777);DataStream<SensorReading> dataStream = inputStream.map(new MapFunction<SensorReading>() {@Overridepublic SensorReading map(String value) {String[] fields = value.split(",");return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2]));}}).assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<SensorReading>(Time.seconds(2)) {@Overridepublic long extractTimestamp(SensorReading element) {return element.getTimestamp() * 1000L;}});OutputTag<SensorReading> outputTag = new OutputTag<SensorReading>("late"){};//开窗聚合SingleOutputStreamOperator<SensorReading> minTempStream = dataStream.keyBy("id").timeWindow(Time.seconds(15)).allowedLateness(Time.minutes(1));.sideOutputLateData(outputTag).minBy("temperature");minTempStream.print("minTemp");minTempStream.getSideOutput(outputTag).print("late");/**依次输入数据:sensor_1,1547718199,35.8sensor_1,1547718206,36.3sensor_1,1547718210,34.7sensor_1,1547718211,31sensor_1,1547718209,34.9sensor_1,1547718212,37.1sensor_1,1547718213,33sensor_1,1547718206,34.2sensor_1,1547718202,36...sensor_1,1547718272,34sensor_1,1547718203,30.6输出的结果分析:1.在接收到 sensor_1,1547718212,37.1 时,触发 [1547718195,1547718210) 窗口执行,此时输出数据 sensor_1,1547718209,34.9,此时 2 秒内的延迟数据能被处理  2.在接收到 sensor_1,1547718206,34.2 时,由于设置了允许 1 分钟迟到,所以 [1547718195,1547718210) 窗口仍然没有关闭,此时会更新数据为 sensor_1,1547718206,34.2,此时的系统时间戳为 1547718213 - 2 = 1547718211 - 1547718210 < 603.在接收到 sensor_1,1547718202,36 时,[1547718195,1547718210) 窗口仍然会更新输出一次数据 sensor_1,1547718206,34.24.在接收到 sensor_1,1547718272,34 时,属于 [1547718210,1547718225) 窗口的数据会输出 sensor_1,1547718211,31,此时的系统时间戳为 1547718272 - 2 = 1547718270,由于 1547718270 - 1547718210 >= 60,所以 [1547718195,1547718210) 窗口会真正的关闭5.在之后接收到 sensor_1,1547718203,30.6 时,会把数据输出到侧输出流中*/env.execute();}   
}

这篇关于详解 Flink 的时间语义和 watermark的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1043195

相关文章

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

java中反射(Reflection)机制举例详解

《java中反射(Reflection)机制举例详解》Java中的反射机制是指Java程序在运行期间可以获取到一个对象的全部信息,:本文主要介绍java中反射(Reflection)机制的相关资料... 目录一、什么是反射?二、反射的用途三、获取Class对象四、Class类型的对象使用场景1五、Class