InfluxDB存储数据是否需要水平拆分表?

2024-06-08 19:32

本文主要是介绍InfluxDB存储数据是否需要水平拆分表?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

业务场景是这样:8000个点,每秒存一次,存3个月,大约600亿条记录。
如果保存策略RP的保留是90天,那么分片shard的时长在一天就比较合理,那么一天的量就是:8,000×3,600×24=691,200,000,大概每天近7亿条数据。这个量对于influxdb单机来说是够用了,除非每条记录量的确很大,那么可以考虑采购商业版本做成分布式来提升磁盘I/O性能。

无需你再去做所谓的表水平切分,毫无意义。水平分表针对的都是按行存储与索引的传统关系型数据库,水平分表的逻辑还是按key或者时间进行行集的范围划分,加快定位,减少扫描。对于influxdb,其底层存储设计理念完全不同于传统关系表数据库,它的TSM数据模型源自于nosql常用的LSM-Tree数据模型设计,又远胜于此模型,是基于时序TS数据的特定优化,

至于按时间范围查询会不会很慢?这个问题,其实这种忧虑是多余的,这就需要理解其分片存放和TSM结构:

按照这种保留策略,每隔一天就会形成一个分片目录,存放一天的TSM数据,那么无论是600亿还是6000亿,按照时间范围查询一定是先根据目录索引。如果你是influxdb集群,例如:8个节点,2个副本,相当于对一天的数据又切成了四分,也就是一个节点的某个分片目录只对应了1.7亿的数据,集群的分布这会让读写更快。



我们在细究到influxdb时间查询问题的内部,influxdb为什么用时间范围查就一定很快,上面聊的是分片的文件目录优化带来的查询性能提升,其实tsm文件本身就分成了数据块集合和索引块集合两部分,一个数据块就是由时间戳(timestamps)的集合与值(values)的集合组成。索引块由N个索引实体组成,每个索引实体提供了数据块最小时间和最大时间的偏移量,这个时间范围就定位到了要取的数据块,因此查询的时候,Series + field作为主键定位一个索引块,然后用时间范围在索引块中去定位匹配的一组索引实体,也就很快定位到了匹配的数据块集合。

 我们在细究到它的内部结构原理上,influxdb的存储是按照Series+field的方式存储时间戳与数据块集合,内存中还原后类似Series+field={timestamp1:value1,timestamp2:value2,..}这种结构,典型的列式结构,查询时按照series作为行键进行fields列的排序成行,输出结果,这又类似于列簇的结构,明显看出要比常见的按k/v单元存储之上增强了V的按时间线的聚合性。这就完美地匹配了时序数据的特征,数据块中时间戳的聚合排列以及fields值的聚合排列,带来了惊人的压缩效率,同样按照时间范围的查询效率更为惊人!

因此我们可以看到,influxdb就是玩时间线存储的高手,这也是为什么几个亿的记录让它用时间范围去匹配,很轻松达到秒级以内别速度。


守护石 「技术创作」
关注领域:大数据技术、分布式架构 | 技术管理icon-default.png?t=LA92http://www.readbyte.com/

这篇关于InfluxDB存储数据是否需要水平拆分表?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1043100

相关文章

SpringBoot3.X 整合 MinIO 存储原生方案

《SpringBoot3.X整合MinIO存储原生方案》本文详细介绍了SpringBoot3.X整合MinIO的原生方案,从环境搭建到核心功能实现,涵盖了文件上传、下载、删除等常用操作,并补充了... 目录SpringBoot3.X整合MinIO存储原生方案:从环境搭建到实战开发一、前言:为什么选择MinI

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

MySQL之InnoDB存储引擎中的索引用法及说明

《MySQL之InnoDB存储引擎中的索引用法及说明》:本文主要介绍MySQL之InnoDB存储引擎中的索引用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录1、背景2、准备3、正篇【1】存储用户记录的数据页【2】存储目录项记录的数据页【3】聚簇索引【4】二