OpenCV学习(4.7) Canndy边缘检测

2024-06-08 18:52

本文主要是介绍OpenCV学习(4.7) Canndy边缘检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.目标

在本章中,我们将了解

  • Canny 边缘检测的概念
  • OpenCV 的功能: cv.Canny()

Canny边缘检测是一种经典的边缘检测算法,由John F. Canny在1986年提出。Canny算法的目标是找到图像中真正的边缘,同时尽可能地抑制噪声。Canny算法包括以下几个步骤:

  1. 高斯模糊:使用高斯滤波器对图像进行平滑处理,以减少噪声的影响。

  2. 计算梯度:使用Sobel算子或其他差分算子计算图像的梯度,得到梯度的幅度和方向。

  3. 非极大值抑制:在梯度方向上,保留局部梯度最大值点,从而得到梯度幅值图像的边缘候选点。

  4. 双阈值处理:设置两个阈值,一个较低的阈值和一个较高的阈值。对梯度幅值图像进行阈值处理,将梯度值大于较高阈值的点作为强边缘,将梯度值介于两个阈值之间的点作为弱边缘。

  5. 边缘跟踪:使用双阈值和边缘梯度方向,进行边缘跟踪,得到最终的边缘图像。

2.1  高斯模糊(去噪声)

一般而言,图像边缘意味着亮度的剧烈变化,可以通过图像的二阶导也就是梯度来衡量,不过再此之前需要清楚噪声,因为噪声的周围亮度也存在变化,会影响边缘检测效果。所以首先需要用滤波器来清除噪声,椒盐噪声用中值滤波,高斯噪声用高斯滤波。

2.2 计算梯度
  • 利用sobel算子算出中心点附近的分别沿 x轴和 y轴的差值

 

2.3 非极大值抑制 

非极大值抑制(Non-Maximum Suppression,NMS)是图像处理中的一种常用技术,特别是在边缘检测中。它的基本原理是在图像的每个像素点上,如果该点的像素值不是在其梯度方向上的最大值,那么这个点的像素值将被抑制或设置为0。这样可以保留图像中的边缘,因为边缘通常在梯度方向上具有局部最大值。

具体来说,对于图像中的每个像素点(x,y),我们首先计算该点的梯度方向。然后,我们沿着梯度方向在图像中滑动一个小的窗口(如3x3的窗口),并在窗口内找到梯度幅值的最大值。如果当前像素点的梯度幅值不是这个最大值,那么我们就将这个像素点的梯度幅值设置为0。

这个过程可以表示为:

  1. 计算图像 f(x,y) 在点(x,y) 的梯度方向 θ。
  2. 在梯度方向 θ 上,从点(x,y) 开始,滑动一个小的窗口(如3x3窗口)。
  3. 在这个窗口内,找到梯度幅值的最大值 M。
  4. 如果当前像素点的梯度幅值 f(x,y) 不等于 M,则将 f(x,y) 设置为0。

非极大值抑制的结果是一幅图像,其中保留了边缘,而噪声和其他非边缘区域被抑制。这个技术可以有效地突出图像中的边缘,并减少噪声的影响。

A 点位于边缘(垂直方向)。渐变方向与边缘垂直。 B 点和 C 点处于梯度方向。因此,用点 B 和 C 检查点 A,看它是否形成局部最大值。如果是这样,则考虑下一阶段,否则,它被抑制(归零)。简而言之,您得到的结果是具有“细边”的二进制图像。

2.4 双阈值处理

双阈值处理(Double Thresholding)是Canny边缘检测算法中的一个关键步骤,它用于确定哪些边缘是真正的边缘,哪些可能是由噪声引起的假边缘。这个步骤包括以下几个子步骤:

  1. 设置两个阈值:首先,需要选择两个阈值,通常用 T1​ 和 T2​ 表示,其中 T1​<T2​。这两个阈值用于区分强边缘和弱边缘。

  2. 边缘强度分类:对非极大值抑制后的图像进行阈值处理。将图像中的每个像素点的梯度幅值与两个阈值进行比较:

    • 如果梯度幅值大于或等于 T2​,则该点被认为是强边缘,并被标记为边缘点。
    • 如果梯度幅值介于 T1​ 和 T2​ 之间,则该点被认为是弱边缘,并被暂时保留。
    • 如果梯度幅值小于 T1​,则该点不是边缘,通常被忽略。
  3. 边缘连接:对于弱边缘,需要检查它们是否与强边缘相连。如果一个弱边缘点与某个强边缘点相邻(在梯度方向上),那么这个弱边缘点也被认为是边缘点。

  4. 结果边缘图:最终得到的边缘图包含所有的强边缘和通过连接得到的弱边缘。

双阈值处理的关键在于选择合适的阈值 T1​ 和 T2​。这两个阈值的选择会影响到边缘检测的准确性和鲁棒性。通常,T1​ 应该设置得比噪声水平略高,而 T2​ 应该设置得比 T1​ 高一些,以确保只有真正的边缘被保留。

双阈值处理有助于Canny算法在保持高检测率的同时,尽可能地减少错误检测。通过这种方式,算法能够区分真正的边缘和噪声,从而提供高质量的边缘检测结果。

边缘 A 高于 maxVal,因此被视为“确定边缘”。虽然边 C 低于 maxVal,但它连接到边 A,因此也被视为有效边,我们得到完整的曲线。但是边缘 B 虽然高于 minVal 并且与边缘 C 的区域相同,但它没有连接到任何“可靠边缘”,因此被丢弃。因此,我们必须相应地选择 minVal 和 maxVal 才能获得正确的结果。

在假设边是长线的情况下,该阶段也消除了小像素噪声。所以我们最终得到的是图像中的强边缘。

3. opencv的canny边缘检测

OpenCV 将以上所有内容放在单个函数中, cv.Canny() 。我们将看到如何使用它。第一个参数是我们的输入图像。第二个和第三个参数分别是我们的 minVal 和 maxVal。第三个参数是 aperture_size。它是用于查找图像渐变的 Sobel 内核的大小。默认情况下,它是 3.最后一个参数是 L2gradient,它指定用于查找梯度幅度的等式。如果它是 True,它使用上面提到的更准确的等式,否则它使用这个函数: $$ Edge_Gradient ; (G) = |G_x| + |G_y| $$ 默认情况下,它为 False。

import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('messi5.jpg',0)
edges = cv.Canny(img,100,200)
plt.subplot(121),plt.imshow(img,cmap = 'gray')
plt.title('Original Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(edges,cmap = 'gray')
plt.title('Edge Image'), plt.xticks([]), plt.yticks([])
plt.show()

 

 

 

这篇关于OpenCV学习(4.7) Canndy边缘检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1043021

相关文章

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

C++ 检测文件大小和文件传输的方法示例详解

《C++检测文件大小和文件传输的方法示例详解》文章介绍了在C/C++中获取文件大小的三种方法,推荐使用stat()函数,并详细说明了如何设计一次性发送压缩包的结构体及传输流程,包含CRC校验和自动解... 目录检测文件的大小✅ 方法一:使用 stat() 函数(推荐)✅ 用法示例:✅ 方法二:使用 fsee

Python如何将OpenCV摄像头视频流通过浏览器播放

《Python如何将OpenCV摄像头视频流通过浏览器播放》:本文主要介绍Python如何将OpenCV摄像头视频流通过浏览器播放的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完... 目录方法1:使用Flask + MJPEG流实现代码使用方法优点缺点方法2:使用WebSocket传输视

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元