详解FedAvg:联邦学习的开山之作

2024-06-08 17:44

本文主要是介绍详解FedAvg:联邦学习的开山之作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

FedAvg:2017年 开山之作

论文地址:https://proceedings.mlr.press/v54/mcmahan17a/mcmahan17a.pdf
源码地址:https://github.com/shaoxiongji/federated-learning
针对的问题:移动设备中有大量的数据,但显然我们不能收集这些数据到云端以进行集中训练,所以引入了一种分布式的机器学习方法,即联邦学习Federal Learning。在FL中,server将全局模型下放给各client,client利用本地的数据去训练模型,并将训练后的权重上传到server,从而实现全局模型的更新。
论文贡献

  1. 提出了联邦学习这个研究方向,简单来说就是从分散的存储于各设备的数据中训练模型;
  2. 提出了FedAvg算法;
  3. 通过实验验证了FedAvg的可靠性;

总结一下就是,本文提出了FedAvg算法,这种算法融合了client上的局部随机梯度下降和server上的模型平均。作者用该算法做了不少实验,结果表明FedAvg对于unbalanced且non-iid的数据有很好的鲁棒性,并且使得在非数据中心存储的数据上进行深度网络训练所需的通信轮次减少了好几个数量级。
算法介绍

  1. 联邦随机梯度下降算法FedSGD

设定固定的学习率η,对K个client的数据计算损失梯度:
g k = ▽ F k ( w t ) g_k=\bigtriangledown F_k(w_t) gk=Fk(wt)
server将聚合每个服务器计算的梯度,以此来更新模型参数:
w t + 1 ← w t − η ∑ k = 1 K n k n g k = w t − η ▽ f ( w t ) w_{t+1}\leftarrow w_t-\eta\sum\limits_{k=1}^K\frac{n_k}{n}g_k=w_t-\eta\bigtriangledown f(w_t) wt+1wtηk=1Knnkgk=wtηf(wt)

  1. 联邦平均算法FedAvg:

在client进行局部模型的更新:
w t + 1 k ← w t − η g k w_{t+1}^k\leftarrow w_t-\eta g_k wt+1kwtηgk
server对每个client更新后的权重进行加权平均:
w t + 1 ← ∑ k = 1 K n k n w t + 1 k w_{t+1}\leftarrow \sum_{k=1}^K \frac{n_k}{n}w_{t+1}^k wt+1k=1Knnkwt+1k
注意,在这里每个client可以在本地独立地多次更新本地权重,然后将更好的权重参数发给server进行加权平均。这样做的好处是不用每更新一次就去聚合,这大大减少了通信量。
FedAvg的计算量与3个参数有关:

  • C:每轮训练选择client的比例,每一轮通信时只选择C*K个client;(K为client总数)
  • E:每个client更新本地权重时,在本地数据集上训练E轮;
  • B:client更新权重时,每次梯度下降所使用的数据量,即本地数据集的batch size;

对于一个拥有 n k n_k nk个数据样本的client,每轮通信本地参数的更新次数为:
u k = E × n k B u_k=E\times\frac{n_k}{B} uk=E×Bnk
所以我们可知,FedSGD只是FedAvg的一个特例,即当参数 E = 1 , B = ∞ E=1,B=\infty E=1B=时,FedAvg等价于FedSGD。注: B = ∞ B=\infty B=意味着batch size大小就是本地数据集大小。
下面为FedAvg的算法流程图:
FedAvg算法流程图
实验设计与实现
Q1:在训练伊始,需不需要对模型进行统一初始化?
image.png
可见,采用不同的初始化参数进行模型平均,模型性能比两个父模型都差(左图);而统一初始化后,对模型的平均可以显著减少整个训练集的loss,模型性能优于两个父模型(右图)。
该结论是实现FL的重要支持,在每一轮通信时,server有必要发布全局模型,使各client采用相同的参数在本地数据集上进行训练,可以有效减少loss。
Q2:数据集怎么设置?
原文中主要研究了MNIST数据集和一个莎士比亚作品集构建的数据集,但我们在这里主要关注MNIST数据集和Cifar-10数据集,这两个数据集也是以后FL领域工作最常用的。
在模型选择方面,作者选择了多层感知机MLP和卷积神经网络CNN。
在数据集划分方面,作者假设有100个client,对于MNIST数据集,进行了iid和non-iid两种划分:

  • MNIST-iid:数据随机打乱分给100个client,每个client得到600个样例;
  • MNIST-non-iid:按数字label将数据集划分为200个大小为300的碎片,每个client两个碎片,意味着每个client至多只能获得两种label的样例;

对于Cifar-10数据集,做了iid划分。
Q3:实验咋做的?
作者指出,相比于传统模式下训练模型时计算开销为主通信开销较小的情况,在FL中,通信开销才是大头,因此减少通信开销才是我们需要关注的,作者提出可以通过加大计算以减少训练模型所需的通信轮数。作者提出主要有两种方法:提高并行度、增加每个client的计算量
而FedAvg的计算量在前面我们也给出过,再来看一下:
u k = E × n k B u_k=E\times\frac{n_k}{B} uk=E×Bnk
提高并行度:固定参数E,对C和B进行讨论。注:此处C=0时,算法也会选择一个client参与,详见上面的算法流程图。
2NN测试集acc 97%,CNN测试集acc 99%所需的通信轮数

  • B = ∞ B=\infty B=时,增加client的比例C,效果提升的优势较小;
  • B = 10 B=10 B=10时,效果显著改善了,特别是在non-iid情况下;
  • B = 10 , C ≥ 10 B=10,C\geq10 B=10,C10时,收敛速度明显改进,当client到一定数量后,收敛速度增加也不明显了;

增加每个client的计算量:根据公式,可以通过增加E或者减小B实现。
对测试集到达期望acc所需的通信轮数

  • 每个通信轮次内增加更多的本地SGD可以显著降低通信成本;
  • 对于unbalanced-non-iid的莎士比亚数据集减少的通信轮数更多,推测可能某些client有相对较大的本地数据集,这种情况下增加了本地训练的价值;

Q4:FedAvg VS FedSGD?
image.png
蓝色实现即为FedSGD。由图可知,FedAvg相比FedSGD不仅降低通信轮数,还具有更高的测试精度。推测是平均模型产生了类似Dropout的正则化效益。
Q5:加大每个client的计算量会不会导致过拟合?
image.png
加大每个client的计算量(主要体现在加大E),确实可能导致训练损失停滞或发散。所以在实际应用时,在训练后期减少各client的E,或者在loss有震荡的苗头时即刻停止,这样做有助于收敛。
Q6:在Cifar-10数据集上的表现如何?
如下图所示:
image.png
image.png
针对第一张图的一点吐槽,你去拿分布式深度学习去pk单机上的深度学习,去比通信轮数,这不是太不公平了。。。
总结展望
作者证明了FL在实践中是可行的,能够用相对较少的通信轮数训练出高质量的模型。并且提出未来的一个方向就是通过差分隐私、安全多方技术等隐私保护技术去组合FL以提供隐私保护。

这篇关于详解FedAvg:联邦学习的开山之作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1042867

相关文章

51单片机学习记录———定时器

文章目录 前言一、定时器介绍二、STC89C52定时器资源三、定时器框图四、定时器模式五、定时器相关寄存器六、定时器练习 前言 一个学习嵌入式的小白~ 有问题评论区或私信指出~ 提示:以下是本篇文章正文内容,下面案例可供参考 一、定时器介绍 定时器介绍:51单片机的定时器属于单片机的内部资源,其电路的连接和运转均在单片机内部完成。 定时器作用: 1.用于计数系统,可

问题:第一次世界大战的起止时间是 #其他#学习方法#微信

问题:第一次世界大战的起止时间是 A.1913 ~1918 年 B.1913 ~1918 年 C.1914 ~1918 年 D.1914 ~1919 年 参考答案如图所示

[word] word设置上标快捷键 #学习方法#其他#媒体

word设置上标快捷键 办公中,少不了使用word,这个是大家必备的软件,今天给大家分享word设置上标快捷键,希望在办公中能帮到您! 1、添加上标 在录入一些公式,或者是化学产品时,需要添加上标内容,按下快捷键Ctrl+shift++就能将需要的内容设置为上标符号。 word设置上标快捷键的方法就是以上内容了,需要的小伙伴都可以试一试呢!

AssetBundle学习笔记

AssetBundle是unity自定义的资源格式,通过调用引擎的资源打包接口对资源进行打包成.assetbundle格式的资源包。本文介绍了AssetBundle的生成,使用,加载,卸载以及Unity资源更新的一个基本步骤。 目录 1.定义: 2.AssetBundle的生成: 1)设置AssetBundle包的属性——通过编辑器界面 补充:分组策略 2)调用引擎接口API

Javascript高级程序设计(第四版)--学习记录之变量、内存

原始值与引用值 原始值:简单的数据即基础数据类型,按值访问。 引用值:由多个值构成的对象即复杂数据类型,按引用访问。 动态属性 对于引用值而言,可以随时添加、修改和删除其属性和方法。 let person = new Object();person.name = 'Jason';person.age = 42;console.log(person.name,person.age);//'J

大学湖北中医药大学法医学试题及答案,分享几个实用搜题和学习工具 #微信#学习方法#职场发展

今天分享拥有拍照搜题、文字搜题、语音搜题、多重搜题等搜题模式,可以快速查找问题解析,加深对题目答案的理解。 1.快练题 这是一个网站 找题的网站海量题库,在线搜题,快速刷题~为您提供百万优质题库,直接搜索题库名称,支持多种刷题模式:顺序练习、语音听题、本地搜题、顺序阅读、模拟考试、组卷考试、赶快下载吧! 2.彩虹搜题 这是个老公众号了 支持手写输入,截图搜题,详细步骤,解题必备

《offer来了》第二章学习笔记

1.集合 Java四种集合:List、Queue、Set和Map 1.1.List:可重复 有序的Collection ArrayList: 基于数组实现,增删慢,查询快,线程不安全 Vector: 基于数组实现,增删慢,查询快,线程安全 LinkedList: 基于双向链实现,增删快,查询慢,线程不安全 1.2.Queue:队列 ArrayBlockingQueue:

十四、观察者模式与访问者模式详解

21.观察者模式 21.1.课程目标 1、 掌握观察者模式和访问者模式的应用场景。 2、 掌握观察者模式在具体业务场景中的应用。 3、 了解访问者模式的双分派。 4、 观察者模式和访问者模式的优、缺点。 21.2.内容定位 1、 有 Swing开发经验的人群更容易理解观察者模式。 2、 访问者模式被称为最复杂的设计模式。 21.3.观察者模式 观 察 者 模 式 ( Obser

【操作系统】信号Signal超详解|捕捉函数

🔥博客主页: 我要成为C++领域大神🎥系列专栏:【C++核心编程】 【计算机网络】 【Linux编程】 【操作系统】 ❤️感谢大家点赞👍收藏⭐评论✍️ 本博客致力于知识分享,与更多的人进行学习交流 ​ 如何触发信号 信号是Linux下的经典技术,一般操作系统利用信号杀死违规进程,典型进程干预手段,信号除了杀死进程外也可以挂起进程 kill -l 查看系统支持的信号

硬件基础知识——自学习梳理

计算机存储分为闪存和永久性存储。 硬盘(永久存储)主要分为机械磁盘和固态硬盘。 机械磁盘主要靠磁颗粒的正负极方向来存储0或1,且机械磁盘没有使用寿命。 固态硬盘就有使用寿命了,大概支持30w次的读写操作。 闪存使用的是电容进行存储,断电数据就没了。 器件之间传输bit数据在总线上是一个一个传输的,因为通过电压传输(电流不稳定),但是电压属于电势能,所以可以叠加互相干扰,这也就是硬盘,U盘