【传知代码】基于曲率的图重新布线(论文复现)

2024-06-08 02:04

本文主要是介绍【传知代码】基于曲率的图重新布线(论文复现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言:在图形处理中,一个至关重要的问题是图形的重新布线,即在不改变图形基本结构的前提下,通过调整节点间的连接关系,使图形具有更好的性质,如更低的复杂度、更高的可视化效果或更强的鲁棒性。传统的图形重新布线方法往往依赖于直观的经验或简单的启发式算法,难以适应复杂多变的应用场景,近年来,基于曲率的图重新布线技术应运而生,为图形优化领域带来了新的曙光。与传统的方法相比,基于曲率的图重新布线技术更加注重图形局部的几何特性,通过计算节点的曲率来指导重新布线的过程。

本文所涉及所有资源均在传知代码平台可获取

目录

概述

演示效果

核心代码

写在最后


概述

        大部分的图神经网络(Graph Neural Networks GNN)采用消息传递模式,在这种模式下,节点的特性会在输入的图上进行传递。近期的科学研究揭示,来自遥远节点的信息丢失确实是影响依赖于远程交互任务的消息传输效率的一个关键因素。这种限制通常被命名为“过度挤压”(Over-squashing)。图中每个结点的k跳邻居数量会随着k的增加而指数级增加,这导致远距离结点的信息很难被压缩到固定大小的结点特征中,从而造成信息的丢失,这是过度挤压的原因,这里参考了一下这篇论文,地址 具体如下:

        这篇文章为我们提供了GNN中的过度挤压现象的详细描述,并探讨了它是如何从图表中的瓶颈问题中产生的。因此,本研究提出了一种创新的基于边的组合曲率方法,并成功证实了负曲率边是引发过度挤压问题的根本原因。此外,本文还介绍了一种利用曲率进行图重现布线的策略,旨在减轻过度挤压的问题,如下图所示,上图:曲面上曲率的演变可能会减少瓶颈。下图:本文展示了如何在图上做同样的事情来提高GNN的性能。蓝色代表负曲率;红色代表正曲率:

接下来对本次论文讲述的核心算法进行如下一个简单的讲解:

1)黎曼几何中的一个自然对象是里奇曲率(Ricci curvature),这是一种决定测地线色散的双线性形式,即从“相同”速度的附近点开始的测地线是否保持平行(欧几里得空间)、收敛(球面空间)或发散(双曲空间)。

2)算法在每次迭代中都会添加一条边来支持图中最负曲率的边,然后移除最正曲率的边。

3)要求k∈B1(i),l∈B1(j)k∈B1​(i),l∈B1​(j)是为了确保我们在最负曲率的边i∼ji∼j周围添加额外的3-cycle或4-cycle。这是一个局部修改。

4)原始输入图和重新布线图之间的图编辑距离以max number of iterations的2倍为界。

5)temperatureτ>0τ>0决定了添加边的随机程度,τ=∞τ=∞表示总是添加最佳边。

6)移除曲率最大的边是为了平衡曲率和结点的度的分布。

7)使用Balanced Forman curvature计算Ric(i,j)Ric(i,j)

8)optimal Ric upper-boundC+C+用于防止算法使得曲率分布负偏斜。C+=∞C+=∞表示不移除任何边。

如下图所示:

演示效果

本次代码支持Cora, Citeseer, Pubmed, Cornell, Texas, Wisconsin 脚本自动下载,如不能请参考geom-gcn ,这里不同数据集的配置文件位于./configs/。运行之前需要修改数据集根目录和输出目录:

output_dir: $OUTPUT_DIR$
data:root: $DATA_ROOT$

测试集和训练集可以采用下面的方式进行:

# train on train data splits
python train.py --config-file configs/*.yaml
# test on val and test data splits
python eval.py --config-file configs/*.yaml
// 或
search_dir=configs
for file in "$search_dir"/*
dopython train.py --config-file $filepython eval.py --config-file $file
done

运行结果可以参考下面的方式,运行日志、模型权重、重新布线结果保存在$OUTPUT_DIR/$DATASET_NAME/ 测试结果(accuracy)保存在./result.csv:

核心代码

下面这段代码实现了对图数据进行流形学习的过程,其中使用了 Ricci 曲率作为度量距离的方法。具体来说,代码实现了一个基于 Ricci 曲率的图形变形算法,即 SDRF(Spectral Deformation and Ricci Flow)算法,该算法主要包含以下步骤:

1)将 Pytorch Geometric 中的数据类型 Data 转换为 NetworkX 中的数据类型 DiGraph,方便后续的加边、减边操作。

2)获取图的邻接矩阵和边的个数。

3)进入图的加边、减边循环过程,其中 max_iterations 为最大迭代次数:

4)将 NetworkX 中的数据类型 DiGraph 转换为 Pytorch Geometric 中的数据类型 Data,并返回。

        其中,BFC 算法是一种计算曲率的方法,用于计算 Ricci 曲率矩阵。具体来说,它通过计算形式曲率和平衡形式曲率之间的差异来计算 Ricci 曲率。在算法中,balanced_forman_curvature 函数用于计算 Ricci 曲率矩阵,balanced_forman_post_delta 函数用于计算边添加之后对 Ricci 曲率的提升程度。

SDRF 算法是一种流形学习算法,用于在图数据中计算距离和相似度。通过迭代加边、减边的方法,SDRF 算法可以将图数据进行形变,从而使得距离和相似度更加符合实际情况,代码如下:
 

def sdrf(data, max_iterations=10, remove_edges=True, remove_bound=0.5, tau=1.0, undirected=True):# 1. 将torch_geometric.data.Data实例转化为networkx.DiGraph实例,方便后续加边、减边操作G = to_networkx(data)if undirected:G = G.to_undirected()# 2. 获取图信息(邻接矩阵,边的个数)edge_index = data.edge_indexif undirected:edge_index = to_undirected(edge_index)A = to_dense_adj(remove_self_loops(edge_index)[0])[0]  # 邻接矩阵A = A.cuda()N = A.shape[0]  # 边的个数C = torch.zeros(N, N).cuda()  # 初始化Ricci曲率矩阵,即Ric(i, j)# 3. 进入图的加边、减边循环过程,其中max_iterations为最大迭代次数for x in range(max_iterations):can_add = True# 3.1 根据BFC算法更新Ricci曲率矩阵balanced_forman_curvature(A, C=C)ix_min = C.argmin().item()x = ix_min // Ny = ix_min % N# 3.2 计算可加边的候选集candidatesif undirected:x_neighbors = list(G.neighbors(x)) + [x]y_neighbors = list(G.neighbors(y)) + [y]else:x_neighbors = list(G.successors(x)) + [x]y_neighbors = list(G.predecessors(y)) + [y]candidates = []for i in x_neighbors:for j in y_neighbors:if (i != j) and (not G.has_edge(i, j)):candidates.append((i, j))# 3.3 根据边添加之后对Ricci曲率的提升程度,从候选集中选择边k~l进行添加if len(candidates):D = balanced_forman_post_delta(A, x, y, x_neighbors, y_neighbors)improvements = []for i, j in candidates:improvements.append((D - C[x, y])[x_neighbors.index(i), y_neighbors.index(j)].item())k, l = candidates[np.random.choice(range(len(candidates)), p=softmax(np.array(improvements), tau=tau))]G.add_edge(k, l)  # 添加边if undirected:A[k, l] = A[l, k] = 1else:A[k, l] = 1else:can_add = Falseif not remove_edges:break# 3.4 移除具有最大Ricci曲率的边,其中remove_bound为曲率最大上界if remove_edges:ix_max = C.argmax().item()x = ix_max // Ny = ix_max % Nif C[x, y] > remove_bound:G.remove_edge(x, y)  # 移除边if undirected:A[x, y] = A[y, x] = 0else:A[x, y] = 0else:if can_add is False:break# 4. 将networkx.DiGraph实例转化为torch_geometric.data.Data实例,返回return from_networkx(G)

写在最后

        在探索图形优化技术的道路上,基于曲率的图重新布线技术以其独特的视角和强大的能力,为我们揭示了图形处理领域的新可能。通过对节点曲率的精确计算和合理利用,这一技术不仅能够保持图形的整体结构稳定,更能在细节上精雕细琢,使图形展现出更加平滑、美观的视觉效果。

        回顾我们所探讨的内容,基于曲率的图重新布线技术凭借其先进性和实用性,已经在多个领域展现出了巨大的应用潜力。无论是社交网络分析中的用户关系优化,还是城市规划中的道路网络设计,甚至是生物科学中的蛋白质交互图研究,这一技术都为我们提供了全新的解决方案,随着技术的不断进步和应用领域的不断拓展,基于曲率的图重新布线技术将会迎来更加广阔的发展空间。我们可以预见,未来的图形优化将更加注重局部细节的优化和整体结构的稳定性,而基于曲率的图重新布线技术正是这一趋势的引领者。

详细复现过程的项目源码、数据和预训练好的模型可从该文章下方附件获取。

这篇关于【传知代码】基于曲率的图重新布线(论文复现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1040937

相关文章

uniapp接入微信小程序原生代码配置方案(优化版)

uniapp项目需要把微信小程序原生语法的功能代码嵌套过来,无需把原生代码转换为uniapp,可以配置拷贝的方式集成过来 1、拷贝代码包到src目录 2、vue.config.js中配置原生代码包直接拷贝到编译目录中 3、pages.json中配置分包目录,原生入口组件的路径 4、manifest.json中配置分包,使用原生组件 5、需要把原生代码包里的页面修改成组件的方

公共筛选组件(二次封装antd)支持代码提示

如果项目是基于antd组件库为基础搭建,可使用此公共筛选组件 使用到的库 npm i antdnpm i lodash-esnpm i @types/lodash-es -D /components/CommonSearch index.tsx import React from 'react';import { Button, Card, Form } from 'antd'

17.用300行代码手写初体验Spring V1.0版本

1.1.课程目标 1、了解看源码最有效的方式,先猜测后验证,不要一开始就去调试代码。 2、浓缩就是精华,用 300行最简洁的代码 提炼Spring的基本设计思想。 3、掌握Spring框架的基本脉络。 1.2.内容定位 1、 具有1年以上的SpringMVC使用经验。 2、 希望深入了解Spring源码的人群,对 Spring有一个整体的宏观感受。 3、 全程手写实现SpringM

代码随想录算法训练营:12/60

非科班学习算法day12 | LeetCode150:逆波兰表达式 ,Leetcode239: 滑动窗口最大值  目录 介绍 一、基础概念补充: 1.c++字符串转为数字 1. std::stoi, std::stol, std::stoll, std::stoul, std::stoull(最常用) 2. std::stringstream 3. std::atoi, std

记录AS混淆代码模板

开启混淆得先在build.gradle文件中把 minifyEnabled false改成true,以及shrinkResources true//去除无用的resource文件 这些是写在proguard-rules.pro文件内的 指定代码的压缩级别 -optimizationpasses 5 包明不混合大小写 -dontusemixedcaseclassnames 不去忽略非公共

麻了!一觉醒来,代码全挂了。。

作为⼀名程序员,相信大家平时都有代码托管的需求。 相信有不少同学或者团队都习惯把自己的代码托管到GitHub平台上。 但是GitHub大家知道,经常在访问速度这方面并不是很快,有时候因为网络问题甚至根本连网站都打不开了,所以导致使用体验并不友好。 经常一觉醒来,居然发现我竟然看不到我自己上传的代码了。。 那在国内,除了GitHub,另外还有一个比较常用的Gitee平台也可以用于

众所周知,配置即代码≠基础设置即代码

​前段时间翻到几条留言,问: “配置即代码和基础设施即代码一样吗?” “配置即代码是什么?怎么都是基础设施即代码?” 我们都是知道,DevOp的快速发展,让服务器管理与配置的时间大大减少,配置即代码和基础设施即代码作为DevOps的重要实践,在其中起到了关键性作用。 不少人将二者看作是一件事,配置即大代码是关于管理特定的应用程序配置设置本身,而基础设施即代码更关注的是部署支持应用程序环境所需的

53、Flink Interval Join 代码示例

1、概述 interval Join 默认会根据 keyBy 的条件进行 Join 此时为 Inner Join; interval Join 算子的水位线会取两条流中水位线的最小值; interval Join 迟到数据的判定是以 interval Join 算子的水位线为基准; interval Join 可以分别输出两条流中迟到的数据-[sideOutputLeftLateData,

Git代码管理的常用操作

在VS022中,Git的管理要先建立本地或远程仓库,然后commit到本地,最后push到远程代码库。 或者不建立本地的情况,直接拉取已有的远程代码。 Git是一个分布式版本控制系统,用于跟踪和管理文件的变化。它可以记录文件的修改历史,并且可以轻松地回滚到任何历史版本。 Git的基本概念包括: 仓库(Repository):Git使用仓库来存储文件的版本历史。一个仓库可以包含多个文件

HTML文档插入JS代码的几种方法

在HTML文档里嵌入客户端JavaScript代码有4中方法: 1.内联,放置在< script>和标签对之间。 2.放置在由< script>标签的src属性指定的外部文件中。 3.放置在HTML事件处理程序中,该事件处理程序由onclick或onmouseover这样的HTML属性值指定。 4.放在一个URL里,这个URL使用特殊的“javascript:”协议。 在JS编程中,主张