算法金 | 不愧是腾讯,问基础巨细节 。。。

2024-06-08 01:36

本文主要是介绍算法金 | 不愧是腾讯,问基础巨细节 。。。,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


大侠幸会,在下全网同名「算法金」

0 基础转 AI 上岸,多个算法赛 Top

「日更万日,让更多人享受智能乐趣」

最近,有读者参加了腾讯算法岗位的面试,面试着重考察了基础知识,并且提问非常详细。

特别是关于AdaBoost算法的问题,面试官问了很多。

今天,我们就来和大家探讨一下 AdaBoost 算法的相关知识。

1. 概要

1.1 Adaboost 的起源和发展

Adaboost,全称为 Adaptive Boosting,由 Freund 和 Schapire 于 1996 年提出,是一种迭代的机器学习算法。Adaboost 的核心思想是通过组合多个弱分类器(weak classifiers),构建一个强分类器(strong classifier)。这种方法在各种应用场景中取得了显著的成功,尤其在分类问题上表现突出。

1.2 Adaboost 的基本思想

Adaboost 的基本思想是根据上一次分类器的错误率,调整训练样本的权重,使得那些被错误分类的样本在后续的分类器中得到更多的关注。通过不断迭代和调整权重,最终得到一个综合了多个弱分类器的强分类器。

2. Adaboost 的核心知识点

2.1 基础概念

Adaboost 是一种集成学习方法,集成了多个弱分类器来提高整体的分类性能。每个弱分类器的权重根据其分类准确度进行调整。

2.2 工作原理

Adaboost 的工作原理可以分为以下几个步骤:

  1. 初始化样本权重。
  2. 训练弱分类器。
  3. 计算弱分类器的错误率。
  4. 更新样本权重,使错误分类的样本权重增加。
  5. 构建最终的强分类器。

2.3 算法步骤

  • 初始化:为每个训练样本赋予相等的权重。
  • 迭代:对于每次迭代:
  • 训练一个弱分类器。
  • 计算分类误差率。
  • 更新样本权重,使误分类样本的权重增加。
  • 计算该分类器的权重。
  • 组合:将所有弱分类器组合成一个强分类器。

2.4 权重更新机制

2.5 弱分类器的选择

Adaboost 对弱分类器的选择没有严格的限制,可以使用决策树、线性分类器等。在实践中,决策树桩(决策树深度为1)常被用作弱分类器。

3. Adaboost 的数学基础

3.1 Adaboost 算法公式

Adaboost 的核心在于通过多次迭代训练弱分类器并组合这些弱分类器来构建一个强分类器。在每次迭代中,算法会调整样本的权重,使得那些被误分类的样本在后续的迭代中得到更多的关注。

3.2 损失函数

Adaboost 使用指数损失函数来衡量分类错误的程度。损失函数的形式为:

3.3 权重更新公式

代码示范

为了更好地理解 Adaboost 的数学基础,我们将在代码中实现这些公式。

import numpy as np# 初始化样本权重
n_samples = 100
weights = np.ones(n_samples) / n_samples# 假设我们有两个简单的弱分类器
def weak_classifier_1(x):return np.where(x[:, 0] > 0, 1, -1)def weak_classifier_2(x):return np.where(x[:, 1] > 0, 1, -1)# 模拟训练数据
X = np.random.randn(n_samples, 2)
y = np.where(X[:, 0] + X[:, 1] > 0, 1, -1)# 第一次迭代
pred_1 = weak_classifier_1(X)
error_1 = np.sum(weights * (pred_1 != y)) / np.sum(weights)
alpha_1 = 0.5 * np.log((1 - error_1) / error_1)
weights = weights * np.exp(-alpha_1 * y * pred_1)
weights /= np.sum(weights)# 第二次迭代
pred_2 = weak_classifier_2(X)
error_2 = np.sum(weights * (pred_2 != y)) / np.sum(weights)
alpha_2 = 0.5 * np.log((1 - error_2) / error_2)
weights = weights * np.exp(-alpha_2 * y * pred_2)
weights /= np.sum(weights)# 最终分类器
H = alpha_1 * weak_classifier_1(X) + alpha_2 * weak_classifier_2(X)
final_pred = np.sign(H)

4. 代码示范

4.1 数据准备

在这一部分,我们将使用一个内置的经典数据集——鸢尾花数据集(Iris Dataset)。这个数据集包含了三类鸢尾花的特征,常用于分类算法的演示。

from sklearn.datasets import load_iris
import matplotlib.pyplot as plt
import seaborn as sns# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target# 数据集可视化
sns.pairplot(sns.load_dataset("iris"), hue="species")
plt.show()

说明:

  • 我们使用 load_iris() 函数加载鸢尾花数据集,其中 X 为特征数据,y 为标签数据。
  • 使用 Seaborn 的 pairplot 函数可视化数据集,展示不同特征之间的关系。

4.2 Adaboost 算法实现

我们将使用 Scikit-learn 的 AdaBoostClassifier 来实现 Adaboost 算法,并进行训练和预测。

from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
import pandas as pd
import seaborn as sns# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 初始化 Adaboost 分类器
adaboost = AdaBoostClassifier(base_estimator=DecisionTreeClassifier(max_depth=1),n_estimators=50,learning_rate=1.0,random_state=42
)# 训练模型
adaboost.fit(X_train, y_train)# 预测
y_pred = adaboost.predict(X_test)# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f'分类准确率: {accuracy:.2f}')

说明:

  • 我们将数据集分为训练集和测试集,使用 train_test_split 函数,测试集占 30%。
  • 初始化 AdaBoostClassifier,设置基本分类器为决策树桩(DecisionTreeClassifier),迭代次数为 50。
  • 训练模型并使用测试集进行预测,计算并输出分类准确率。

运行后输出:

分类准确率: 1.00

4.3 结果分析

我们将进一步分析模型的性能,包括分类报告和混淆矩阵,并对结果进行可视化。

# 打印分类报告
print(classification_report(y_test, y_pred, target_names=iris.target_names))# 混淆矩阵
conf_matrix = confusion_matrix(y_test, y_pred)
conf_matrix_df = pd.DataFrame(conf_matrix, index=iris.target_names, columns=iris.target_names)# 混淆矩阵可视化
plt.figure(figsize=(10, 7))
sns.heatmap(conf_matrix_df, annot=True, cmap='Blues')
plt.title('Adaboost 分类结果 - 混淆矩阵')
plt.xlabel('预测标签')
plt.ylabel('真实标签')
plt.show()

说明:

  • 打印分类报告,包括每个类别的精确率、召回率和 F1 分数,帮助我们评估模型性能。
  • 计算混淆矩阵,并将其转换为 DataFrame 格式,便于可视化。
  • 使用 Seaborn 的 heatmap 函数可视化混淆矩阵,展示预测标签与真实标签之间的对应关系。

通过代码示范和结果分析,我们可以直观地了解 Adaboost 算法的实现过程及其在分类问题上的表现。

5. Adaboost 的优缺点

5.1 优点

  1. 高准确率:Adaboost 通过集成多个弱分类器,显著提高了分类准确率。
  2. 简单易用:Adaboost 的实现和应用相对简单,且无需对弱分类器进行大量调整。
  3. 鲁棒性:对噪声数据和异常值具有较高的鲁棒性,能够很好地处理复杂的分类问题。
  4. 无偏性:不容易过拟合,尤其在弱分类器是简单模型的情况下。

5.2 缺点

  1. 对噪声敏感:在数据中存在大量噪声时,Adaboost 的性能可能会下降,因为噪声数据会被赋予较高的权重。
  2. 计算复杂度较高:随着迭代次数的增加,计算量也会增加,尤其在处理大规模数据时。
  3. 需要大量的弱分类器:为了获得理想的分类效果,通常需要集成大量的弱分类器。

5.3 适用场景

  1. 文本分类:Adaboost 在自然语言处理中的文本分类任务中表现良好。
  2. 图像识别:用于识别图像中的目标,如人脸识别等。
  3. 生物信息学:在基因表达数据分类等生物信息学问题中具有广泛应用。
  4. 金融风控:用于信用评分、欺诈检测等金融领域的风险控制。

[ 抱个拳,总个结 ]

在本文中,我们详细介绍了 Adaboost 算法的核心概念和应用。首先,我们了解了 Adaboost 的起源和基本思想。接着,我们深入探讨了 Adaboost 的工作原理、算法步骤、权重更新机制和弱分类器的选择,并通过代码示范展示了其具体实现过程。

我们还介绍了 Adaboost 的数学基础,包括算法公式、损失函数和权重更新公式,使大侠们对其理论有了更深入的理解。在代码示范部分,我们结合武侠元素的数据集,详细展示了 Adaboost 算法在实际应用中的操作步骤,并对结果进行了可视化和分析。

随后,我们讨论了 Adaboost 的优缺点及其适用场景,帮助大侠们在实际应用中更好地评估和选择该算法。最后,通过具体的经典应用案例,如图像识别和文本分类,我们展示了 Adaboost 在不同领域的强大能力和广泛应用。

希望通过本文的介绍,大侠们能够更全面地了解和掌握 Adaboost 算法,在今后的学习和实践中,灵活运用这一强大的机器学习工具。

[ 算法金,碎碎念 ]

全网同名,日更万日,让更多人享受智能乐趣

如果觉得内容有价值,烦请大侠多多 分享、在看、点赞,助力算法金又猛又持久、很黄很 BL 的日更下去;

同时邀请大侠 关注、星标 算法金,围观日更万日,助你功力大增、笑傲江湖

这篇关于算法金 | 不愧是腾讯,问基础巨细节 。。。的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1040882

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念