【高频】什么是索引的下推和覆盖

2024-06-08 01:36
文章标签 覆盖 索引 高频 下推

本文主要是介绍【高频】什么是索引的下推和覆盖,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

面试回答:

  • 索引的下推是指数据库引擎在执行查询时,将过滤条件尽可能地应用到索引上,以减少需要检索的数据量,从而提高查询性能。这样可以减少数据库引擎从磁盘加载的数据量,提高查询效率。
  • 覆盖索引是指一个索引包含了查询需要的所有字段,因此数据库引擎可以直接使用索引返回查询结果,而无需再次访问实际的数据行。覆盖索引通常用于优化查询性能,特别是对于那些需要返回大量数据列的查询。

总结:索引的下推和覆盖索引都是用于优化查询性能的技术。索引的下推通过将过滤条件应用到索引上,减少实际数据的检索量;而覆盖索引通过包含所有需要的字段,避免了回表操作,提高了查询效率。这两种技术通常结合使用,以提高数据库查询的性能。

一、覆盖索引

https://juejin.cn/post/7221910604469796922 (参考)

1.定义

在MySQL的查询优化过程中,覆盖索引是一种常见的优化技术。覆盖索引指的是一个查询可以仅通过索引就能够返回所需的所有列,而无需再次到表中查找。 【当sql语句的所求查询字段(select列)和查询条件字段(where子句)全都包含在一个索引中 (联合索引),可以直接使用索引查询而不需要回表。 】

传统的索引通常只包含关键字和指向实际数据的指针,因此在查找时需要再次到表中进行查找,以获取其他列的数据。而覆盖索引则将覆盖列也包含进了索引中,可以直接从索引中返回所有需要的列,从而避免二次查找的开销,提高了查询效率。

2.原理

利用索引数据结构存储了查询所需的字段信息,当查询命中覆盖索引时,数据库引擎可以直接从索引中获取所有需要的数据,而无需再去访问实际的数据行。

示例:

有一个包含以下字段的表 products

  • product_id (主键)
  • product_name
  • price
  • category

现在我们想要查询产品名称和价格,但是我们只想使用覆盖索引来提高查询性能。我们可以创建一个包含 product_name 和 price 字段的覆盖索引来实现这个目的。

#创建覆盖索引
CREATE INDEX idx_product_name_price ON products (product_name, price);

由于覆盖索引包含了 product_name 和 price 字段,数据库引擎可以直接从索引中获取这两个字段的值,而无需再访问实际的数据行,从而提高查询性能。

SELECT product_name, price FROM products WHERE category = 'electronics';
3.优劣

优点:

  • 避免了二次查找:使用索引覆盖可以直接从索引中返回需要的列,避免了再次到表中进行查找的开销,提高查询效率。
  • 减少了I/O操作:覆盖索引通常可以使用索引下推技术,直接在索引中过滤,从而减少了要读取的行数,降低了I/O操作。

缺点:

  • 对索引的要求较高:使用覆盖索引必须创建一个包含所有需要返回的列的联合索引,而联合索引的效率和使用场景都有一定限制,否则可能会导致索引扫描的代价比较大。
  • 占用更多的空间:覆盖索引包含了所有需要返回的列,因此会占用更多的存储空间,而且在修改表数据时需要更新索引,也会带来额外开销。

二、索引下推

参考:https://www.cnblogs.com/three-fighter/p/15246577.html

1.定义

索引下推(Index Condition Pushdown,简称ICP),是MySQL5.6版本的新特性,它能减少回表查询次数,提高查询效率。在索引遍历过程中,对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数来提高查询效率

2.原理

MySQL服务层负责SQL语法解析、生成执行计划等,并调用存储引擎层去执行数据的存储和检索。索引下推下推其实就是指将部分上层(服务层)负责的事情,交给了下层(引擎层)去处理。

Mysql的大概框架:

没有使用ICP的情况下,MySQL的查询:

  • 存储引擎读取索引记录;
  • 根据索引中的主键值,定位并读取完整的行记录;
  • 存储引擎把记录交给Server层去检测该记录是否满足WHERE条件。

使用ICP的情况下,查询过程:

  • 存储引擎读取索引记录(不是完整的行记录);
  • 判断WHERE条件部分能否用索引中的列来做检查,条件不满足,则处理下一行索引记录;
  • 条件满足,使用索引中的主键去定位并读取完整的行记录(就是所谓的回表);
  • 存储引擎把记录交给Server层,Server层检测该记录是否满足WHERE条件的其余部分。
示例:

有一个包含以下字段的表 orders

  • order_id (主键)
  • order_date
  • customer_id
  • total_amount

创建一个索引来包含 order_date 和 customer_id 字段:

CREATE INDEX idx_order_date_customer_id ON orders (order_date, customer_id); 

执行一个查询,让数据库引擎利用索引下推来过滤数据:

SELECT * FROM orders WHERE order_date = '2022-01-01' AND customer_id = 123; 

在这个示例中,数据库引擎可以利用索引 idx_order_date_customer_id 来过滤出 order_date 为 '2022-01-01' 并且 customer_id 为 123 的数据行,而无需再去访问实际的数据行。这样可以减少不必要的数据访问,提高查询性能。

3.条件
  • 只能用于range、 ref、 eq_refref_or_null访问方法;
  • 只能用于InnoDB和 MyISAM存储引擎及其分区表;
  • InnoDB存储引擎来说,索引下推只适用于二级索引(也叫辅助索引);

索引下推的目的是为了减少回表次数,也就是要减少IO操作。对于InnoDB聚簇索引来说,数据和索引是在一起的,不存在回表这一说。

  • 引用了子查询的条件不能下推;
  • 引用了存储函数的条件不能下推,因为存储引擎无法调用存储函数。

三、最左匹配原则

最左匹配原则:是指在使用多列索引进行查询时,MySQL会尽可能地利用索引的最左边的列来执行查询和过滤数据。这意味着,如果一个查询条件涉及到多列索引,MySQL通常只会使用索引中最左边的列来进行匹配和过滤,而不会跳过最左边的列直接使用索引中的后续列。

举个例子,假设有一个包含 (A,B,C) 三列的索引,那么在查询过程中,MySQL会优先使用 A 列来过滤数据,然后才会考虑 B 列和 C 列。如果查询条件只涉及索引的 A 列,那么索引可以被充分利用;但如果查询条件只涉及 B 列或 C 列,那么索引的后续列可能无法被有效利用。

缺点:

  • 无法充分利用索引:当查询条件不满足最左匹配原则时,索引的后续列无法被有效利用,导致索引的效率降低。

  • 索引冗余:为了满足最左匹配原则,可能需要创建冗余的索引,以应对不同的查询条件,这样会增加索引所占用的空间。

  • 索引维护成本高:由于需要考虑最左匹配原则,索引的设计可能会更复杂,维护起来也更困难。

  • 查询性能下降:当查询条件无法满足最左匹配原则时,可能需要进行全表扫描,导致查询性能下降。

使用场景:

  • 组合索引:当需要创建组合索引来满足多个查询条件时,根据最常用的查询条件放在最左边,可以充分利用最左匹配原则,提高查询性能。

  • 查询条件遵循左侧顺序:当查询条件经常遵循索引的最左边列的顺序时,最左匹配原则可以有效提高查询性能。

  • 覆盖索引:当使用覆盖索引来优化查询性能时,最左匹配原则可以帮助确保索引覆盖所需的查询字段,从而减少回表操作,提高查询性能。

四、回表

回表:指当数据库引擎在使用索引进行查询时,如果无法直接从索引中获取全部需要的数据,就需要继续访问实际的数据行来获取完整的信息。这种情况下,数据库引擎需要通过索引找到相应的记录指针,然后再根据指针去实际的数据表中检索数据,这个过程就称为回表。

回表通常发生在以下情况:

  • 当查询结果需要返回的字段不完全包含在索引中;
  • 当使用覆盖索引查询的条件无法覆盖所有需要返回的字段。

回表会造成:

  1. 性能下降:回表操作涉及额外的IO操作,需要访问聚集索引来获取完整的数据行,导致查询性能下降。特别是在大规模数据表上或高并发的查询场景下,回表操作可能会成为性能瓶颈。
  2. 增加数据库负载:回表操作会引起额外的数据库负载,包括磁盘读取和内存消耗。当频繁进行回表操作时,可能会导致数据库服务器的负载过高,影响整体性能。
  3. 降低查询效率:由于回表需要额外的IO访问,查询的速度变慢,从而降低了查询效率,影响了用户体验。
  4. 增加网络开销:如果数据库服务器和应用服务器位于不同的节点或机器上,回表操作会增加网络开销,进一步影响查询性能。

这篇关于【高频】什么是索引的下推和覆盖的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1040875

相关文章

vue解决子组件样式覆盖问题scoped deep

《vue解决子组件样式覆盖问题scopeddeep》文章主要介绍了在Vue项目中处理全局样式和局部样式的方法,包括使用scoped属性和深度选择器(/deep/)来覆盖子组件的样式,作者建议所有组件... 目录前言scoped分析deep分析使用总结所有组件必须加scoped父组件覆盖子组件使用deep前言

oracle数据库索引失效的问题及解决

《oracle数据库索引失效的问题及解决》本文总结了在Oracle数据库中索引失效的一些常见场景,包括使用isnull、isnotnull、!=、、、函数处理、like前置%查询以及范围索引和等值索引... 目录oracle数据库索引失效问题场景环境索引失效情况及验证结论一结论二结论三结论四结论五总结ora

Python绘制土地利用和土地覆盖类型图示例详解

《Python绘制土地利用和土地覆盖类型图示例详解》本文介绍了如何使用Python绘制土地利用和土地覆盖类型图,并提供了详细的代码示例,通过安装所需的库,准备地理数据,使用geopandas和matp... 目录一、所需库的安装二、数据准备三、绘制土地利用和土地覆盖类型图四、代码解释五、其他可视化形式1.

Python中列表的高级索引技巧分享

《Python中列表的高级索引技巧分享》列表是Python中最常用的数据结构之一,它允许你存储多个元素,并且可以通过索引来访问这些元素,本文将带你深入了解Python列表的高级索引技巧,希望对... 目录1.基本索引2.切片3.负数索引切片4.步长5.多维列表6.列表解析7.切片赋值8.删除元素9.反转列表

MySQL的索引失效的原因实例及解决方案

《MySQL的索引失效的原因实例及解决方案》这篇文章主要讨论了MySQL索引失效的常见原因及其解决方案,它涵盖了数据类型不匹配、隐式转换、函数或表达式、范围查询、LIKE查询、OR条件、全表扫描、索引... 目录1. 数据类型不匹配2. 隐式转换3. 函数或表达式4. 范围查询之后的列5. like 查询6

PostgreSQL如何查询表结构和索引信息

《PostgreSQL如何查询表结构和索引信息》文章介绍了在PostgreSQL中查询表结构和索引信息的几种方法,包括使用`d`元命令、系统数据字典查询以及使用可视化工具DBeaver... 目录前言使用\d元命令查看表字段信息和索引信息通过系统数据字典查询表结构通过系统数据字典查询索引信息查询所有的表名可

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

最大流=最小割=最小点权覆盖集=sum-最大点权独立集

二分图最小点覆盖和最大独立集都可以转化为最大匹配求解。 在这个基础上,把每个点赋予一个非负的权值,这两个问题就转化为:二分图最小点权覆盖和二分图最大点权独立集。   二分图最小点权覆盖     从x或者y集合中选取一些点,使这些点覆盖所有的边,并且选出来的点的权值尽可能小。 建模:     原二分图中的边(u,v)替换为容量为INF的有向边(u,v),设立源点s和汇点t

POJ3041 最小顶点覆盖

N*N的矩阵,有些格子有物体,每次消除一行或一列,最少要几次消灭完。 行i - >列j 连边,表示(i,j)处有物体,即 边表示 物体。 import java.io.BufferedReader;import java.io.InputStream;import java.io.InputStreamReader;import java.io.PrintWriter;impo

贝壳面试:什么是回表?什么是索引下推?

尼恩说在前面 在40岁老架构师 尼恩的读者交流群(50+)中,最近有小伙伴拿到了一线互联网企业如得物、阿里、滴滴、极兔、有赞、希音、百度、网易、美团的面试资格,遇到很多很重要的面试题: 1.谈谈你对MySQL 索引下推 的认识? 2.在MySQL中,索引下推 是如何实现的?请简述其工作原理。 3、说说什么是 回表,什么是 索引下推 ? 最近有小伙伴在面试 贝壳、soul,又遇到了相关的