CUDA中线程索引计算方法

2024-06-07 23:18

本文主要是介绍CUDA中线程索引计算方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接: https://blog.csdn.net/hujingshuang/article/details/53097222

        由于项目需要用到GPU,所以最近开始学习CUDA编程模型,刚开始接触,先搞清楚线程关系和内存模型是非常重要的,但是发现书上和许多博客关于线程这些关系没讲明白,所以就着自己的理解,做点笔记,欢迎讨论。

        这篇文章针对于已经了解过了CUDA线程的相关知识,最好已经动手写过CUDA C的代码,而对并行线程感到迷惑,不知道怎么计算线程索引的读者,如果没接触过,那么先看看书,敲两段代码跑跑,如果你理解了那么恭喜你,如果还有疑惑,那么再来看看这篇文章,或许有帮助。

        首先,看看GPU的Kernel上的两层线程组织结构

                                        

下面我们来看一段代码,其功能是对两个数组求和,并保存到另一个数组,很简单吧~

#include <cuda_runtime.h>
#include <device_launch_parameters.h>
#include <iostream>using namespace std;// 二:线程执行代码
__global__ void vector_add(float* vec1, float* vec2, float* vecres, int length) {int tid = threadIdx.x;if (tid < length) {vecres[tid] = vec1[tid] + vec2[tid];}
}int main() {const int length = 16;                                      // 数组长度为16float a[length], b[length], c[length];                      // host中的数组for (int i = 0; i < length; i++) {                          // 初始赋值a[i] = b[i] = i;}float* a_device, *b_device, *c_device;                      // device中的数组cudaMalloc((void**)&a_device, length * sizeof(float));      // 分配内存cudaMalloc((void**)&b_device, length * sizeof(float));cudaMalloc((void**)&c_device, length * sizeof(float));cudaMemcpy(a_device, a, length * sizeof(float), cudaMemcpyHostToDevice);    // 将host数组的值拷贝给device数组cudaMemcpy(b_device, b, length * sizeof(float), cudaMemcpyHostToDevice);// 一:参数配置dim3 grid(1, 1, 1), block(length, 1, 1);                    // 设置参数vector_add<<<grid,block>>>(a_device, b_device, c_device, length);           // 启动kernelcudaMemcpy(c, c_device, length * sizeof(float), cudaMemcpyDeviceToHost);    // 将结果拷贝到hostfor (int i = 0; i < length; i++) {                          // 打印出来方便观察cout << c[i] << " ";}cout << endl;system("pause");return 0;
}

运行结果:

结果是对的,也是我们所能预料到的。那么现在我们来分析代码中注释的处究竟该怎么来写。

        首先,我们要明白,上面的代码计算的是两个一维向量的和。由于数组大小是16,所以我们使用了16个线程来计算。

dim3 grid(1, 1, 1), block(length, 1, 1);                    // 设置参数

先说grid,在这段代码中,我们设置参数为线程格(grid)中只有一个一维的block,该block的x维度上有16个,这个应该一下就看出来啦。因为grid(x,y,z)中的x=1,y=1,z=1,即各个维度均为1,所以是一维的,数量为xyz=111=1。如果没明白,再看两个例子:

dim3 grid1(2, 1, 1); // x=2, y=1, z=1
dim3 grid2(4, 2, 1); // x=4, y=2, z=1
dim3 grid3(2, 3, 4); // x=2, y=3, z=4

可以知道,grid1是一维的(因为y,z维度是1),grid2是二维的(因为z维度是1),grid3是三维的,且grid1,grid2,grid3中分别有2、8、24个block。

        同理,对于线程块(block),我们知道之前的代码中,block中存在16个线程,且该线程块维度是一维的,因为block(x,y,z)中x=length=16,y=1,z=1。

我画个图来帮助理解,大概就是这样子的:

dim3 grid(1, 1, 1), block(length, 1, 1);                    // 设置参数


        OK,我想这下应该就清楚了,就是一个一维的block(此处只有x维度上存在16个线程)。所以,內建变量只有一个在起作用,就是threadIdx.x,它的范围是[0,15]。因此,我们在计算线程索引是,只用这个內建变量就行了(其他的为0,写了也不起作用):

// 二:线程执行代码
__global__ void vector_add(float* vec1, float* vec2, float* vecres, int length) {int tid = threadIdx.x;              // 只使用了threadIdx.xif (tid < length) {vecres[tid] = vec1[tid] + vec2[tid];}
}

OK,看到这里,你可能还是不大明白什么一维二维的,我们再来看一个:

dim3 grid(1, 1, 1), block(8, 2, 1);                    // 设置参数


根据上面的介绍,我们知道这个线程格只有一个一维的线程块,该线程块内的线程是二维的,x的维度为8,y的维度为2,共有8*2=16个线程,如果要用这16个线程来计算数组的累加,当然是可以的,但是我们这里需要改动一下线程执行代码中的索引计算方式了。
// 二:线程执行代码
__global__ void vector_add(float* vec1, float* vec2, float* vecres, int length) {int tid = threadIdx.y * blockDim.x +  threadIdx.x;  // 使用了threadIdx.x, threadIdx.x, blockDim.xif (tid < length) {vecres[tid] = vec1[tid] + vec2[tid];}
}

我们一定要有并行思想,这里有16个线程,kernel启动后,每个线程都有自己的索引号,比如某个线程位于grid中哪个维度的block(即blockIdx.x,block.y,block.z),又位于该block的哪个维度的线程(即threadIdx.x,threadIdx.y,threadIdx.z),利用这些线程索引号映射到对应的数组下标,我们要做的工作就是将保证这些下标不重复(如果重复的话,那就惨了),最初那种一维的计算方式就不行了。因此,通过使用threadIdx,blockDim来进行映射(偏移)。blockDim.x=8,blockDim.y=2,如上代码。

        其实,我感觉有些我不能用文字准确、清晰的描述出来,所以咯,我们再来一个例子吧,我相信,多看一看,多想一想就明白了。

dim3 grid(1, 1, 1), block(4, 4, 1);                    // 设置参数

我们将block改成上面的这样,其线程模型为下图:


当然,kernel函数的代码依然可以不用变动,这个应该想得清楚,还是再写一下吧。
// 二:线程执行代码
__global__ void vector_add(float* vec1, float* vec2, float* vecres, int length) {int tid = threadIdx.y * blockDim.x +  threadIdx.x;  // 使用了threadIdx.x, threadIdx.x, blockDim.xif (tid < length) {vecres[tid] = vec1[tid] + vec2[tid];}
}

以上内容我们分别介绍了用一维和二维线程来计算一维数组的求和,实际上数组的维度与线程格、线程块和线程的维度并不是那么密不可分的,都可以组合实现,只不过在实现时,良好的参数配置对索引的计算很方便,而且由于grid、block、thread维度的限制,还有warpSize的限制,所以对于较大的数据量来说,我们应该做到心中有数,进行有效的块分解。

        现在来看看二维的block,在整个文章中,我只讲解一维、二维的,因为三维的我不知道怎么画图啦,而且不好描述,免得误导大家。
        还是上面的一维数组,长度为16。

dim3 grid(16, 1, 1), block(1, 1, 1);                    // 设置参数

先来个线程模型图,我想大家并不会感到惊讶,绿色的区域表示grid,蓝色的区域表示block,图中有一个grid和16个block,每个block都是一维,而且x维度上只有一个线程的:

显然,我们的线程索引代码应该为如下:
// 二:线程执行代码
__global__ void vector_add(float* vec1, float* vec2, float* vecres, int length) {int tid = blockIdx.x;if (tid < length) {vecres[tid] = vec1[tid] + vec2[tid];}
}

或许你会有疑惑,那么我们再来看一个:

dim3 grid(4, 1, 1), block(4, 1, 1);

线程索引代码应该为如下:
// 二:线程执行代码
__global__ void vector_add(float* vec1, float* vec2, float* vecres, int length) {int tid = blockIdx.x;if (tid < length) {vecres[tid] = vec1[tid] + vec2[tid];}
}

到现在为止,我觉得你应该有所领悟。如果还是不晓得的话,我想你应该认认真真的看图并动手分析了,图中的每一个块,每一个字都是有它的作用的,你不应该就此放弃。
        我依然相信,能用图解决,就不哔哔。就好像你给一个人描述一座宫殿是多么多么的宏伟,富丽堂皇,他并不不会感冒。你就说,嘿大傻,给你瞧瞧我去欧洲玩的教堂,这是照片,不用多说,大傻自己就知道了。

比如,我描述说:

dim3 grid(4, 1, 1), block(4, 1, 1);

这样肯定不直观,那我再给你一幅示意图:


那么执行代码及索引计算如下:

// 二:线程执行代码
__global__ void vector_add(float* vec1, float* vec2, float* vecres, int length) {// 在第几个块中 * 块的大小 + 块中的x, y维度(几行几列)int tid = (blockIdx.y * gridDim.x + blockIdx.x) * (blockDim.x * blockDim.y) + threadIdx.y * blockDim.y + threadIdx.x;if (tid < length) {vecres[tid] = vec1[tid] + vec2[tid];}
}

上面的代码可能要复杂一点,但是你慢慢的会发现这很有趣。
        到此,我想讲的就完了。当然对于二维的数组或是三维的数组,我想多看几个例子也就会有体会了。

        这里还是忍不住要吐槽骂人一下內建变量threadIdx和blockIdx的命名了,每次看到这些內建变量其最后一个字母是x,就会给我一种误会是x维度上的发火,我觉得使用threadId和blockId是多么的良好可怜。当然,胜利的总是API一方,我也只能吐吐槽快哭了

—————————————————————————————————————————————————————————————————————————————

最后再来一发,我给个图,我们来倒推其参数及相关执行代码,如下:


由于上传图片大小限制,由BMP转成JPG格式的了,有点不清晰,但足够看了。

显然参数为:

dim3 grid(8, 4, 1), block(8, 2, 1);

共有848*2=512个线程,当然在CUDA编程中,这算很少的了。如果是一幅512x512大小的图像做加或点乘之类的运算,随随便便就是几十万的线程数了。

万变不离其宗,其一维的计算方式如下:

__global__ void vector_add(float* vec1, float* vec2, float* vecres, int length) {// 在第几个块中 * 块的大小 + 块中的x, y维度(几行几列)int tid = (blockIdx.y * gridDim.x + blockIdx.x) * (blockDim.x * blockDim.y) + threadIdx.y * blockDim.y + threadIdx.x;if (tid < length) {vecres[tid] = vec1[tid] + vec2[tid];}
}

再给出二维的:

__global__ void vector_add(float** mat1, float** mat2, float** matres, int width) {int x = blockIdx.x * blockDim.x + threadIdx.x;int y = blockIdx.y * blockDim.y + threadIdx.y;if (x < width && y < width) {matres[x][y] = mat1[x][y] + mat2[x][y];}
}

这篇关于CUDA中线程索引计算方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1040584

相关文章

Mysql中InnoDB与MyISAM索引差异详解(最新整理)

《Mysql中InnoDB与MyISAM索引差异详解(最新整理)》InnoDB和MyISAM在索引实现和特性上有差异,包括聚集索引、非聚集索引、事务支持、并发控制、覆盖索引、主键约束、外键支持和物理存... 目录1. 索引类型与数据存储方式InnoDBMyISAM2. 事务与并发控制InnoDBMyISAM

StarRocks索引详解(最新整理)

《StarRocks索引详解(最新整理)》StarRocks支持多种索引类型,包括主键索引、前缀索引、Bitmap索引和Bloomfilter索引,这些索引类型适用于不同场景,如唯一性约束、减少索引空... 目录1. 主键索引(Primary Key Index)2. 前缀索引(Prefix Index /

MySQL进阶之路索引失效的11种情况详析

《MySQL进阶之路索引失效的11种情况详析》:本文主要介绍MySQL查询优化中的11种常见情况,包括索引的使用和优化策略,通过这些策略,开发者可以显著提升查询性能,需要的朋友可以参考下... 目录前言图示1. 使用不等式操作符(!=, <, >)2. 使用 OR 连接多个条件3. 对索引字段进行计算操作4

Java实现Elasticsearch查询当前索引全部数据的完整代码

《Java实现Elasticsearch查询当前索引全部数据的完整代码》:本文主要介绍如何在Java中实现查询Elasticsearch索引中指定条件下的全部数据,通过设置滚动查询参数(scrol... 目录需求背景通常情况Java 实现查询 Elasticsearch 全部数据写在最后需求背景通常情况下

Pandas中多重索引技巧的实现

《Pandas中多重索引技巧的实现》Pandas中的多重索引功能强大,适用于处理多维数据,本文就来介绍一下多重索引技巧,具有一定的参考价值,感兴趣的可以了解一下... 目录1.多重索引概述2.多重索引的基本操作2.1 选择和切片多重索引2.2 交换层级与重设索引3.多重索引的高级操作3.1 多重索引的分组聚

oracle数据库索引失效的问题及解决

《oracle数据库索引失效的问题及解决》本文总结了在Oracle数据库中索引失效的一些常见场景,包括使用isnull、isnotnull、!=、、、函数处理、like前置%查询以及范围索引和等值索引... 目录oracle数据库索引失效问题场景环境索引失效情况及验证结论一结论二结论三结论四结论五总结ora

Python中列表的高级索引技巧分享

《Python中列表的高级索引技巧分享》列表是Python中最常用的数据结构之一,它允许你存储多个元素,并且可以通过索引来访问这些元素,本文将带你深入了解Python列表的高级索引技巧,希望对... 目录1.基本索引2.切片3.负数索引切片4.步长5.多维列表6.列表解析7.切片赋值8.删除元素9.反转列表

MySQL的索引失效的原因实例及解决方案

《MySQL的索引失效的原因实例及解决方案》这篇文章主要讨论了MySQL索引失效的常见原因及其解决方案,它涵盖了数据类型不匹配、隐式转换、函数或表达式、范围查询、LIKE查询、OR条件、全表扫描、索引... 目录1. 数据类型不匹配2. 隐式转换3. 函数或表达式4. 范围查询之后的列5. like 查询6

PostgreSQL如何查询表结构和索引信息

《PostgreSQL如何查询表结构和索引信息》文章介绍了在PostgreSQL中查询表结构和索引信息的几种方法,包括使用`d`元命令、系统数据字典查询以及使用可视化工具DBeaver... 目录前言使用\d元命令查看表字段信息和索引信息通过系统数据字典查询表结构通过系统数据字典查询索引信息查询所有的表名可

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置