【并发基础】ReentrantLock详解(一)

2024-06-07 21:38

本文主要是介绍【并发基础】ReentrantLock详解(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

ReentrantLock重入锁,是实现Lock接口的一个类,也是在实际编程中使用频率很高的一个锁,支持重入性,表示能够对共享资源能够重复加锁,即当前线程获取该锁再次获取不会被阻塞。与此同时,ReentrantLock还支持公平锁和非公平锁两种方式。

数据结构

//自定义同步器,Sync为ReentrantLock的内部类,继承AbstractQueuedSynchronizer
private final Sync sync;//默认为非公平锁
public ReentrantLock() {sync = new NonfairSync();
}//可以指定公平策略
public ReentrantLock(boolean fair) {sync = fair ? new FairSync() : new NonfairSync();
}

核心方法

lock()
public void lock() {sync.lock()
}

lock()获取锁,主要调用AQS的acquire(1),此时可分为三种情况:

  • 当前线程成功获取锁,该方法直接返回,设置state为1;
  • 当前线程已经持有该锁,该方法直接返回,state加1,即重入次数加1;
  • 锁被其他线程持有,则当前线程进入同步队列等待。
lockInterruptibly()
public void lockInterruptibly() throws InterruptedException {sync.acquireInterruptibly(1);
}

该方法和lock类似,只是响应中断,会抛出InterruptedException异常,需要上层调用者自行进行中断异常处理。

该方法直接调用AQS相应的方法实现。

tryLock()
public boolean tryLock() {return sync.nonfairTryAcquire(1);
}

tryLock()尝试获取锁,获取成功则返回true,获取失败则返回false,不会一直阻塞。另一点值得注意的是,该方法始终采用非公平策略,即使初始化时已经声明使用公平策略,也就是说,调用tryLock方法时,会立即尝试获取锁,无论是否还有没有其他线程正在等待。

该方法调用ReentrantLock自定义同步器Sync里面的方法。

tryLock(long timeout, TimeUnit unit)
public boolean tryLock(long timeout, TimeUnit unit) throws InterruptedException {return sync.tryAcquireNanos(1, unit.toNanos(timeout));
}

tryLock()方法有如下特性:

  • 无法立即获取锁时,该方法会等待timeout时间;
  • 当锁声明为公平锁时,该方法支持使用公平策略;
  • 响应中断。

该方法直接调用AQS相应的方法实现。

unlock()
public void unlock() {sync.release(1);
}

unlock()方法会调用ReentrantLock的自定义同步器Sync的tryRelease方法,有如下三种情况:

  • 如果当前线程持有锁,则state减1;
  • 如果state为0时直接释放锁;
  • 如果当前线程不持有锁,则抛出IllegalMonitorStateException异常。
newCondition()
public Condition newCondition() {return sync.newCondition();
}

Condition对象可以起到Object监视器方法(wait, notify, notifyAll)的作用,Object的监视器方法需要在同步方法或同步块中调用,而Condition的方法需要在获取锁之后调用,不同在于一个锁可以创建多个Condition对象,可以对不同线程进行不同的控制(个人理解为是对线程的分类),而synchronized则类似于只有一个Condition对象的Lock。

getHoldCount()
public int getHoldCount() {return sync.getHoldCount();
}

HoldCount记录当前线程持有该锁的次数,如果当前线程持有锁,则该值为state的值,否则为0。

Sync详解

Sync同步器使用AQS的state变量表示持有锁的线程在当前锁重入的数量,当state为0时,表示锁未被其他线程持有。

在ReentrantLock中,重入一次则数量+1。

nonfairTryAcquire(int)

nonfairTryAcquire(int)方法实现非公平的tryLock。

final boolean nonfairTryAcquire(int acquires) {final Thread current = Thread.currentThread();int c = getState();//state为0时,表示没有其他线程持有锁if (c == 0) {//修改state的值,并设置当前线程为该独占锁的持有者if (compareAndSetState(0, acquires)) {setExclusiveOwnerThread(current);return true;}}//如果当前线程已经持有该锁else if (current == getExclusiveOwnerThread()) {//更新state,state表示当前锁已被重入的数量int nextc = c + acquires;if (nextc < 0) // overflowthrow new Error("Maximum lock count exceeded");setState(nextc);return true;}return false;
}
tryRelease(int)

需要持有锁的线程才能调用该方法,否则会抛出IllegalMonitorStateException异常。

protected final boolean tryRelease(int releases) {int c = getState() - releases;if (Thread.currentThread() != getExclusiveOwnerThread())throw new IllegalMonitorStateException();boolean free = false;if (c == 0) {free = true;setExclusiveOwnerThread(null);}setState(c);return free;
}
newCondition()

ReentrantLock的Condition实现为ConditionObject

final ConditionObject newCondition() {return new ConditionObject();
}
其他核心方法
//获取锁的持有者
final Thread getOwner() {return getState() == 0 ? null : getExclusiveOwnerThread();
}//HoldCount表示当前线程持有锁的数量
final int getHoldCount() {return isHeldExclusively() ? getState() : 0;
}//AQS的state用来判断锁是否已被锁定
final boolean isLocked() {return getState() != 0;
}//判断当前线程是否持有该锁
protected final boolean isHeldExclusively() {return getExclusiveOwnerThread() == Thread.currentThread();
}

NonfairSync(非公平同步器)

static final class NonfairSync extends Sync {private static final long serialVersionUID = 7316153563782823691L;final void lock() {//强制获取锁,如果锁未被锁定,也就是state为0,则下面操作返回true,当前线程获取锁//否则返回false,当前线程进入同步队列if (compareAndSetState(0, 1))setExclusiveOwnerThread(Thread.currentThread());elseacquire(1);}//调用父类Sync的nonfairTryAcquire方法获取锁protected final boolean tryAcquire(int acquires) {return nonfairTryAcquire(acquires);}
}

FairSync(公平同步器)

static final class FairSync extends Sync {private static final long serialVersionUID = -3000897897090466540L;//直接调用AQS的acquire方法final void lock() {acquire(1);}protected final boolean tryAcquire(int acquires) {final Thread current = Thread.currentThread();int c = getState();if (c == 0) {//hasQueuedPredecessors判断当前线程是否是下一个可执行结点//非公平锁会直接尝试CAS更新state,但是公平锁需要当前结点是头结点才能使用CAS更新stateif (!hasQueuedPredecessors() &&compareAndSetState(0, acquires)) {setExclusiveOwnerThread(current);return true;}}else if (current == getExclusiveOwnerThread()) {int nextc = c + acquires;if (nextc < 0)throw new Error("Maximum lock count exceeded");setState(nextc);return true;}return false;}
}

参考资料

彻底理解ReentrantLock

这篇关于【并发基础】ReentrantLock详解(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1040370

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

高并发环境中保持幂等性

在高并发环境中保持幂等性是一项重要的挑战。幂等性指的是无论操作执行多少次,其效果都是相同的。确保操作的幂等性可以避免重复执行带来的副作用。以下是一些保持幂等性的常用方法: 唯一标识符: 请求唯一标识:在每次请求中引入唯一标识符(如 UUID 或者生成的唯一 ID),在处理请求时,系统可以检查这个标识符是否已经处理过,如果是,则忽略重复请求。幂等键(Idempotency Key):客户端在每次

K8S(Kubernetes)开源的容器编排平台安装步骤详解

K8S(Kubernetes)是一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用程序。以下是K8S容器编排平台的安装步骤、使用方式及特点的概述: 安装步骤: 安装Docker:K8S需要基于Docker来运行容器化应用程序。首先要在所有节点上安装Docker引擎。 安装Kubernetes Master:在集群中选择一台主机作为Master节点,安装K8S的控制平面组件,如AP

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念

AI基础 L9 Local Search II 局部搜索

Local Beam search 对于当前的所有k个状态,生成它们的所有可能后继状态。 检查生成的后继状态中是否有任何状态是解决方案。 如果所有后继状态都不是解决方案,则从所有后继状态中选择k个最佳状态。 当达到预设的迭代次数或满足某个终止条件时,算法停止。 — Choose k successors randomly, biased towards good ones — Close

嵌入式Openharmony系统构建与启动详解

大家好,今天主要给大家分享一下,如何构建Openharmony子系统以及系统的启动过程分解。 第一:OpenHarmony系统构建      首先熟悉一下,构建系统是一种自动化处理工具的集合,通过将源代码文件进行一系列处理,最终生成和用户可以使用的目标文件。这里的目标文件包括静态链接库文件、动态链接库文件、可执行文件、脚本文件、配置文件等。      我们在编写hellowor

LabVIEW FIFO详解

在LabVIEW的FPGA开发中,FIFO(先入先出队列)是常用的数据传输机制。通过配置FIFO的属性,工程师可以在FPGA和主机之间,或不同FPGA VIs之间进行高效的数据传输。根据具体需求,FIFO有多种类型与实现方式,包括目标范围内FIFO(Target-Scoped)、DMA FIFO以及点对点流(Peer-to-Peer)。 FIFO类型 **目标范围FIFO(Target-Sc