diffusers 使用脚本导入自定义数据集

2024-06-07 18:04

本文主要是介绍diffusers 使用脚本导入自定义数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在训练扩散模型时,如果附加额外的条件图片数据,则需要我们准备相应的数据集。此时我们可以使用官网提供的脚本模板来控制导入我们需要的数据。

您可以参考官方的教程来实现具体的功能需求,为了更加简洁,我将简单描述一下整个流程的关键点:

  1. 首先按照您的需求准备好所有的数据集文件,统一放到一个dataset_name(可以自己定义)目录下,可以划分多个子文件夹,但是需要在您的matadata.json中描述好相对路径位置;这一步和平时准备数据集的过程一样,只是多了额外的条件图片数据。
  2. 在dataset_name下创建同名的dataset_name.py脚本文件,该脚本文件的类名要和脚本名一致,并复制下文的模板内容,然后修改特定位置:
import pandas as pd
from huggingface_hub import hf_hub_url
import datasets
import os_VERSION = datasets.Version("0.0.2")_DESCRIPTION = "TODO"
_HOMEPAGE = "TODO"
_LICENSE = "TODO"
_CITATION = "TODO"_FEATURES = datasets.Features({"image": datasets.Image(),"conditioning_image": datasets.Image(),"text": datasets.Value("string"),},
)METADATA_URL = hf_hub_url("fusing/fill50k",filename="train.jsonl",repo_type="dataset",
)IMAGES_URL = hf_hub_url("fusing/fill50k",filename="images.zip",repo_type="dataset",
)CONDITIONING_IMAGES_URL = hf_hub_url("fusing/fill50k",filename="conditioning_images.zip",repo_type="dataset",
)_DEFAULT_CONFIG = datasets.BuilderConfig(name="default", version=_VERSION)class Fill50k(datasets.GeneratorBasedBuilder):BUILDER_CONFIGS = [_DEFAULT_CONFIG]DEFAULT_CONFIG_NAME = "default"def _info(self):return datasets.DatasetInfo(description=_DESCRIPTION,features=_FEATURES,supervised_keys=None,homepage=_HOMEPAGE,license=_LICENSE,citation=_CITATION,)def _split_generators(self, dl_manager):metadata_path = dl_manager.download(METADATA_URL)images_dir = dl_manager.download_and_extract(IMAGES_URL)conditioning_images_dir = dl_manager.download_and_extract(CONDITIONING_IMAGES_URL)return [datasets.SplitGenerator(name=datasets.Split.TRAIN,# These kwargs will be passed to _generate_examplesgen_kwargs={"metadata_path": metadata_path,"images_dir": images_dir,"conditioning_images_dir": conditioning_images_dir,},),]def _generate_examples(self, metadata_path, images_dir, conditioning_images_dir):metadata = pd.read_json(metadata_path, lines=True)for _, row in metadata.iterrows():text = row["text"]image_path = row["image"]image_path = os.path.join(images_dir, image_path)image = open(image_path, "rb").read()conditioning_image_path = row["conditioning_image"]conditioning_image_path = os.path.join(conditioning_images_dir, row["conditioning_image"])conditioning_image = open(conditioning_image_path, "rb").read()yield row["image"], {"text": text,"image": {"path": image_path,"bytes": image,},"conditioning_image": {"path": conditioning_image_path,"bytes": conditioning_image,},}
  1. 修改时主要关注两个函数,和一些命名:
  • 第一个是_split_generators(),把所有download相关的内容注释掉,这里会让你去下载官方的数据集,我们的需求是准备自己的数据集,所以为了方便直接把这个函数中的关键文件路径改为自己的绝对路径,比如metadata_path,就是你的metadata.json的路径,images_dir和conditioning_images_dir是你的图片的上级目录的绝对路径。这里我曾经测试过使用相对路径,发现是行不通的,主要的问题是diffuers在项目运行时会把当前的脚本先拷贝到c盘,然后再加载入内存,所以相对路径会不起作用。
  • 第二个是_generate_examples(),我们需要按照上个函数给出的路径依次加载图片文件和文本,这里主要是把所有的数据集内容修改为你需要的信息。这里有个关键点是,你必须保证metadata.json中第一列image的内容是不重复的,因为该列会作为索引的key值出现,否则会报错。
  • 最后是把脚本中所有与数据集信息相关的名称校对为你需要的。

在训练过程中,指定好数据集dataset_name的位置,diffusers会自动调用dataset_name.py来读取数据集中的数据。

这篇关于diffusers 使用脚本导入自定义数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1039900

相关文章

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Java easyExcel实现导入多sheet的Excel

《JavaeasyExcel实现导入多sheet的Excel》这篇文章主要为大家详细介绍了如何使用JavaeasyExcel实现导入多sheet的Excel,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录1.官网2.Excel样式3.代码1.官网easyExcel官网2.Excel样式3.代码

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹

Spring 框架之Springfox使用详解

《Spring框架之Springfox使用详解》Springfox是Spring框架的API文档工具,集成Swagger规范,自动生成文档并支持多语言/版本,模块化设计便于扩展,但存在版本兼容性、性... 目录核心功能工作原理模块化设计使用示例注意事项优缺点优点缺点总结适用场景建议总结Springfox 是

嵌入式数据库SQLite 3配置使用讲解

《嵌入式数据库SQLite3配置使用讲解》本文强调嵌入式项目中SQLite3数据库的重要性,因其零配置、轻量级、跨平台及事务处理特性,可保障数据溯源与责任明确,详细讲解安装配置、基础语法及SQLit... 目录0、惨痛教训1、SQLite3环境配置(1)、下载安装SQLite库(2)、解压下载的文件(3)、

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左