diffusers 使用脚本导入自定义数据集

2024-06-07 18:04

本文主要是介绍diffusers 使用脚本导入自定义数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在训练扩散模型时,如果附加额外的条件图片数据,则需要我们准备相应的数据集。此时我们可以使用官网提供的脚本模板来控制导入我们需要的数据。

您可以参考官方的教程来实现具体的功能需求,为了更加简洁,我将简单描述一下整个流程的关键点:

  1. 首先按照您的需求准备好所有的数据集文件,统一放到一个dataset_name(可以自己定义)目录下,可以划分多个子文件夹,但是需要在您的matadata.json中描述好相对路径位置;这一步和平时准备数据集的过程一样,只是多了额外的条件图片数据。
  2. 在dataset_name下创建同名的dataset_name.py脚本文件,该脚本文件的类名要和脚本名一致,并复制下文的模板内容,然后修改特定位置:
import pandas as pd
from huggingface_hub import hf_hub_url
import datasets
import os_VERSION = datasets.Version("0.0.2")_DESCRIPTION = "TODO"
_HOMEPAGE = "TODO"
_LICENSE = "TODO"
_CITATION = "TODO"_FEATURES = datasets.Features({"image": datasets.Image(),"conditioning_image": datasets.Image(),"text": datasets.Value("string"),},
)METADATA_URL = hf_hub_url("fusing/fill50k",filename="train.jsonl",repo_type="dataset",
)IMAGES_URL = hf_hub_url("fusing/fill50k",filename="images.zip",repo_type="dataset",
)CONDITIONING_IMAGES_URL = hf_hub_url("fusing/fill50k",filename="conditioning_images.zip",repo_type="dataset",
)_DEFAULT_CONFIG = datasets.BuilderConfig(name="default", version=_VERSION)class Fill50k(datasets.GeneratorBasedBuilder):BUILDER_CONFIGS = [_DEFAULT_CONFIG]DEFAULT_CONFIG_NAME = "default"def _info(self):return datasets.DatasetInfo(description=_DESCRIPTION,features=_FEATURES,supervised_keys=None,homepage=_HOMEPAGE,license=_LICENSE,citation=_CITATION,)def _split_generators(self, dl_manager):metadata_path = dl_manager.download(METADATA_URL)images_dir = dl_manager.download_and_extract(IMAGES_URL)conditioning_images_dir = dl_manager.download_and_extract(CONDITIONING_IMAGES_URL)return [datasets.SplitGenerator(name=datasets.Split.TRAIN,# These kwargs will be passed to _generate_examplesgen_kwargs={"metadata_path": metadata_path,"images_dir": images_dir,"conditioning_images_dir": conditioning_images_dir,},),]def _generate_examples(self, metadata_path, images_dir, conditioning_images_dir):metadata = pd.read_json(metadata_path, lines=True)for _, row in metadata.iterrows():text = row["text"]image_path = row["image"]image_path = os.path.join(images_dir, image_path)image = open(image_path, "rb").read()conditioning_image_path = row["conditioning_image"]conditioning_image_path = os.path.join(conditioning_images_dir, row["conditioning_image"])conditioning_image = open(conditioning_image_path, "rb").read()yield row["image"], {"text": text,"image": {"path": image_path,"bytes": image,},"conditioning_image": {"path": conditioning_image_path,"bytes": conditioning_image,},}
  1. 修改时主要关注两个函数,和一些命名:
  • 第一个是_split_generators(),把所有download相关的内容注释掉,这里会让你去下载官方的数据集,我们的需求是准备自己的数据集,所以为了方便直接把这个函数中的关键文件路径改为自己的绝对路径,比如metadata_path,就是你的metadata.json的路径,images_dir和conditioning_images_dir是你的图片的上级目录的绝对路径。这里我曾经测试过使用相对路径,发现是行不通的,主要的问题是diffuers在项目运行时会把当前的脚本先拷贝到c盘,然后再加载入内存,所以相对路径会不起作用。
  • 第二个是_generate_examples(),我们需要按照上个函数给出的路径依次加载图片文件和文本,这里主要是把所有的数据集内容修改为你需要的信息。这里有个关键点是,你必须保证metadata.json中第一列image的内容是不重复的,因为该列会作为索引的key值出现,否则会报错。
  • 最后是把脚本中所有与数据集信息相关的名称校对为你需要的。

在训练过程中,指定好数据集dataset_name的位置,diffusers会自动调用dataset_name.py来读取数据集中的数据。

这篇关于diffusers 使用脚本导入自定义数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1039900

相关文章

Mysql中RelayLog中继日志的使用

《Mysql中RelayLog中继日志的使用》MySQLRelayLog中继日志是主从复制架构中的核心组件,负责将从主库获取的Binlog事件暂存并应用到从库,本文就来详细的介绍一下RelayLog中... 目录一、什么是 Relay Log(中继日志)二、Relay Log 的工作流程三、Relay Lo

使用Redis实现会话管理的示例代码

《使用Redis实现会话管理的示例代码》文章介绍了如何使用Redis实现会话管理,包括会话的创建、读取、更新和删除操作,通过设置会话超时时间并重置,可以确保会话在用户持续活动期间不会过期,此外,展示了... 目录1. 会话管理的基本概念2. 使用Redis实现会话管理2.1 引入依赖2.2 会话管理基本操作

Springboot请求和响应相关注解及使用场景分析

《Springboot请求和响应相关注解及使用场景分析》本文介绍了SpringBoot中用于处理HTTP请求和构建HTTP响应的常用注解,包括@RequestMapping、@RequestParam... 目录1. 请求处理注解@RequestMapping@GetMapping, @PostMappin

springboot3.x使用@NacosValue无法获取配置信息的解决过程

《springboot3.x使用@NacosValue无法获取配置信息的解决过程》在SpringBoot3.x中升级Nacos依赖后,使用@NacosValue无法动态获取配置,通过引入SpringC... 目录一、python问题描述二、解决方案总结一、问题描述springboot从2android.x

SpringBoot整合AOP及使用案例实战

《SpringBoot整合AOP及使用案例实战》本文详细介绍了SpringAOP中的切入点表达式,重点讲解了execution表达式的语法和用法,通过案例实战,展示了AOP的基本使用、结合自定义注解以... 目录一、 引入依赖二、切入点表达式详解三、案例实战1. AOP基本使用2. AOP结合自定义注解3.

Python中Request的安装以及简单的使用方法图文教程

《Python中Request的安装以及简单的使用方法图文教程》python里的request库经常被用于进行网络爬虫,想要学习网络爬虫的同学必须得安装request这个第三方库,:本文主要介绍P... 目录1.Requests 安装cmd 窗口安装为pycharm安装在pycharm设置中为项目安装req

使用Python将PDF表格自动提取并写入Word文档表格

《使用Python将PDF表格自动提取并写入Word文档表格》在实际办公与数据处理场景中,PDF文件里的表格往往无法直接复制到Word中,本文将介绍如何使用Python从PDF文件中提取表格数据,并将... 目录引言1. 加载 PDF 文件并准备 Word 文档2. 提取 PDF 表格并创建 Word 表格

使用Python实现局域网远程监控电脑屏幕的方法

《使用Python实现局域网远程监控电脑屏幕的方法》文章介绍了两种使用Python在局域网内实现远程监控电脑屏幕的方法,方法一使用mss和socket,方法二使用PyAutoGUI和Flask,每种方... 目录方法一:使用mss和socket实现屏幕共享服务端(被监控端)客户端(监控端)方法二:使用PyA

Python使用Matplotlib和Seaborn绘制常用图表的技巧

《Python使用Matplotlib和Seaborn绘制常用图表的技巧》Python作为数据科学领域的明星语言,拥有强大且丰富的可视化库,其中最著名的莫过于Matplotlib和Seaborn,本篇... 目录1. 引言:数据可视化的力量2. 前置知识与环境准备2.1. 必备知识2.2. 安装所需库2.3

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度