diffusers 使用脚本导入自定义数据集

2024-06-07 18:04

本文主要是介绍diffusers 使用脚本导入自定义数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在训练扩散模型时,如果附加额外的条件图片数据,则需要我们准备相应的数据集。此时我们可以使用官网提供的脚本模板来控制导入我们需要的数据。

您可以参考官方的教程来实现具体的功能需求,为了更加简洁,我将简单描述一下整个流程的关键点:

  1. 首先按照您的需求准备好所有的数据集文件,统一放到一个dataset_name(可以自己定义)目录下,可以划分多个子文件夹,但是需要在您的matadata.json中描述好相对路径位置;这一步和平时准备数据集的过程一样,只是多了额外的条件图片数据。
  2. 在dataset_name下创建同名的dataset_name.py脚本文件,该脚本文件的类名要和脚本名一致,并复制下文的模板内容,然后修改特定位置:
import pandas as pd
from huggingface_hub import hf_hub_url
import datasets
import os_VERSION = datasets.Version("0.0.2")_DESCRIPTION = "TODO"
_HOMEPAGE = "TODO"
_LICENSE = "TODO"
_CITATION = "TODO"_FEATURES = datasets.Features({"image": datasets.Image(),"conditioning_image": datasets.Image(),"text": datasets.Value("string"),},
)METADATA_URL = hf_hub_url("fusing/fill50k",filename="train.jsonl",repo_type="dataset",
)IMAGES_URL = hf_hub_url("fusing/fill50k",filename="images.zip",repo_type="dataset",
)CONDITIONING_IMAGES_URL = hf_hub_url("fusing/fill50k",filename="conditioning_images.zip",repo_type="dataset",
)_DEFAULT_CONFIG = datasets.BuilderConfig(name="default", version=_VERSION)class Fill50k(datasets.GeneratorBasedBuilder):BUILDER_CONFIGS = [_DEFAULT_CONFIG]DEFAULT_CONFIG_NAME = "default"def _info(self):return datasets.DatasetInfo(description=_DESCRIPTION,features=_FEATURES,supervised_keys=None,homepage=_HOMEPAGE,license=_LICENSE,citation=_CITATION,)def _split_generators(self, dl_manager):metadata_path = dl_manager.download(METADATA_URL)images_dir = dl_manager.download_and_extract(IMAGES_URL)conditioning_images_dir = dl_manager.download_and_extract(CONDITIONING_IMAGES_URL)return [datasets.SplitGenerator(name=datasets.Split.TRAIN,# These kwargs will be passed to _generate_examplesgen_kwargs={"metadata_path": metadata_path,"images_dir": images_dir,"conditioning_images_dir": conditioning_images_dir,},),]def _generate_examples(self, metadata_path, images_dir, conditioning_images_dir):metadata = pd.read_json(metadata_path, lines=True)for _, row in metadata.iterrows():text = row["text"]image_path = row["image"]image_path = os.path.join(images_dir, image_path)image = open(image_path, "rb").read()conditioning_image_path = row["conditioning_image"]conditioning_image_path = os.path.join(conditioning_images_dir, row["conditioning_image"])conditioning_image = open(conditioning_image_path, "rb").read()yield row["image"], {"text": text,"image": {"path": image_path,"bytes": image,},"conditioning_image": {"path": conditioning_image_path,"bytes": conditioning_image,},}
  1. 修改时主要关注两个函数,和一些命名:
  • 第一个是_split_generators(),把所有download相关的内容注释掉,这里会让你去下载官方的数据集,我们的需求是准备自己的数据集,所以为了方便直接把这个函数中的关键文件路径改为自己的绝对路径,比如metadata_path,就是你的metadata.json的路径,images_dir和conditioning_images_dir是你的图片的上级目录的绝对路径。这里我曾经测试过使用相对路径,发现是行不通的,主要的问题是diffuers在项目运行时会把当前的脚本先拷贝到c盘,然后再加载入内存,所以相对路径会不起作用。
  • 第二个是_generate_examples(),我们需要按照上个函数给出的路径依次加载图片文件和文本,这里主要是把所有的数据集内容修改为你需要的信息。这里有个关键点是,你必须保证metadata.json中第一列image的内容是不重复的,因为该列会作为索引的key值出现,否则会报错。
  • 最后是把脚本中所有与数据集信息相关的名称校对为你需要的。

在训练过程中,指定好数据集dataset_name的位置,diffusers会自动调用dataset_name.py来读取数据集中的数据。

这篇关于diffusers 使用脚本导入自定义数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1039900

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

git使用的说明总结

Git使用说明 下载安装(下载地址) macOS: Git - Downloading macOS Windows: Git - Downloading Windows Linux/Unix: Git (git-scm.com) 创建新仓库 本地创建新仓库:创建新文件夹,进入文件夹目录,执行指令 git init ,用以创建新的git 克隆仓库 执行指令用以创建一个本地仓库的

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti