基于ChatGLM3的本地问答机器人部署流程

2024-06-07 16:36

本文主要是介绍基于ChatGLM3的本地问答机器人部署流程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于ChatGLM3的本地问答机器人部署流程

  • 前言
  • 一、确定文件结构
    • 1.新建文件夹储存本地模型
    • 2.下载源码和模型
  • 二、Anaconda环境搭建
    • 1.创建anaconda环境
    • 2.安装相关库
    • 3.设置本地模型路径
    • 4.启动
  • 三、构建本地知识库
    • 1.下载并安装postgresql
    • 2.安装c++库
    • 3.配置向量插件
  • 四、线上运行
  • 五、 全部命令

前言

部署完成后视频演示

https://www.bilibili.com/video/BV1fV3XePEi4/?spm_id_from=333.1007.top_right_bar_window_dynamic.content.click&vd_source=c5d972a40f6877b991f3c691467df568

参考链接:

https://github.com/THUDM/ChatGLM3
https://github.com/chatchat-space/Langchain-Chatchat
#微调
https://github.com/THUDM/ChatGLM3/blob/main/finetune_demo/README.md
https://zhipu-ai.feishu.cn/wiki/QiLtwks1YioOSEkCxFIcAEWNnzb
https://github.com/chatchat-space/Langchain-Chatchat/wiki/

#基于ChatGLM3的本地测井问答机器人设计文档

https://download.csdn.net/download/qq_51985653/89406695

一、确定文件结构

1.新建文件夹储存本地模型

在这里插入图片描述

2.下载源码和模型

#若下载较慢也可复制链接手动下载到本地

git clone https://huggingface.co/THUDM/chatglm2-6b-32k
git clone https://huggingface.co/moka-ai/m3e-base
git clone https://github.com/chatchat-space/Langchain-Chatchat.git

下载完成后的文件结构
在这里插入图片描述

二、Anaconda环境搭建

1.创建anaconda环境

打开anaconda终端,创建并激活环境

conda create -n log-chat python=3.10
conda activate log-chat

在这里插入图片描述

2.安装相关库

conda install spacy
pip install cchardet 
pip install accelerate
pip install --upgrade pip
pip install -r requirements.txt

在这里插入图片描述

3.设置本地模型路径

来到llm-chat模型的configs文件夹下,修改model_config.py的内容
在这里插入图片描述

将LLM_MODELS设置为本地下载的模型文件

LLM_MODELS = ["chatglm2-6b-32k"]

在这里插入图片描述

在MODEL_PATH 中将m3e-base设置为本地路径

在这里插入图片描述

将llm_model中的chatglm2-6b-32k设置为本地模型路径,若本地有其他模型文件则同理

在这里插入图片描述

4.启动

在anaconda终端中进行启动

cd  D:\DeeplearningWorkplace\GPT\models\llm-chat
python startup.py --all-webui

在这里插入图片描述

三、构建本地知识库

1.下载并安装postgresql

在这里插入图片描述

2.安装c++库

在这里插入图片描述

3.配置向量插件

在这里插入图片描述

在这里插入图片描述

在Developer Command Prompt for Vs 2022终端进入源码目录下并执行call命令

cd  D:\DeeplearningWorkplace\GPT\models\llm-chat
call “E:\Softwares\Microsoft Visual tudio\2022\Community\VC\Auxiliary\Build\vcvars64.bat”

在这里插入图片描述

set "PGROOT=E:\Softwares\PostgreSQL\16"
git clone -branch v0.4.4 https://github.com/pgvector/pgvector.git
cd pgvector
nmake /F Makefile.win
nmake /F Makefile.win install

#打开pgAdmin4,创建数据库并安装向量插件

在这里插入图片描述

在这里插入图片描述

四、线上运行

服务器租赁:https://www.autodl.com/

#autodl部署启动命令
cd /root/Langchain-Chatchat/
conda activate /root/pyenv
python startup.py -a
#服务器连接本地参考命令
ssh -CNg -L  8501:127.0.0.1:8501 featurize@workspace.featurize.cn -p 56656ssh -CNg -L 6006:127.0.0.1:6006 root@123.125.240.150 -p 42151#其中root@123.125.240.150和42151分别是实例中SSH指令的访问地址与端口,
#请找到自己实例的ssh指令做相应替换。
#6006:127.0.0.1:6006是指代理实例内6006端口到本地的6006端口。

在这里插入图片描述

添加本地文件到知识库
在这里插入图片描述
在这里插入图片描述

五、 全部命令

#完成建立放置本地模型文件夹后在Anaconda终端执行下述命令
#其中相关路径要修改为自己对应的本地路径#下载模型
git clone https://huggingface.co/THUDM/chatglm2-6b-32k
git clone https://huggingface.co/moka-ai/m3e-base
git clone https://github.com/chatchat-space/Langchain-Chatchat.git#创建并激活conda环境
conda create -n log-chat python=3.10
conda activate log-chat#在模型对应路径下安装相关库
cd  D:\DeeplearningWorkplace\GPT\models\llm-chat
conda install spacy
pip install cchardet 
pip install accelerate
pip install --upgrade pip
pip install -r requirements.txtcd configs 
cp ./model_config.py.example  ./model_config.pycp ./server_config.py.example  ./server_config.pycp ./basic_config.py.example  ./basic_config.pycp ./kb_config.py.example  ./kb_config.py
cp ./prompt_config.py.example  ./prompt_config.py
#修改llm-chat配置文件使其使用本地模型
#修改model_config.py文件内容#anaconda中启动
conda activate log-chat
cd  D:\DeeplearningWorkplace\GPT\models\llm-chat
python startup.py --all-webui#下载postgresql
#https://www.enterprisedb.com/downloads/postgres-postgresql-downloads
#下载visualstudio 安装c++环境
#https://visualstudio.microsoft.com/zh-hans/downloads
#在Developer Command Prompt for Vs 2022终端进入源码目录下
cd  D:\DeeplearningWorkplace\GPT\models\llm-chat#执行call命令
call “E:\Softwares\Microsoft Visual Studio\2022\Community\VC\Auxiliary\Build\vcvars64.bat”#执行下述命令
set "PGROOT=E:\Softwares\PostgreSQL\16"
git clone -branch v0.4.4 https://github.com/pgvector/pgvector.git
cd pgvector
nmake /F Makefile.win
nmake /F Makefile.win install#打开pgAdmin4,创建数据库并安装向量插件
CREATE DATABASE TEST;
CREATE EXTENSION IF NOT EXISTS vector;#打开anaconda终端
conda activate log-chat
cd  D:\DeeplearningWorkplace\GPT\models\llm-chat\configs
python -m spacy download en_core_web_sm
python -m spacy download zh_core_web_sm
pip install psycopg2
pip install pgvetor
cd  D:\DeeplearningWorkplace\GPT\models\llm-chat\
python init_database.py --recreate-vs#启动
python startup.py -a
#之后在网页端上传知识库文件即可

这篇关于基于ChatGLM3的本地问答机器人部署流程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1039707

相关文章

在java中如何将inputStream对象转换为File对象(不生成本地文件)

《在java中如何将inputStream对象转换为File对象(不生成本地文件)》:本文主要介绍在java中如何将inputStream对象转换为File对象(不生成本地文件),具有很好的参考价... 目录需求说明问题解决总结需求说明在后端中通过POI生成Excel文件流,将输出流(outputStre

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

SpringBoot配置Ollama实现本地部署DeepSeek

《SpringBoot配置Ollama实现本地部署DeepSeek》本文主要介绍了在本地环境中使用Ollama配置DeepSeek模型,并在IntelliJIDEA中创建一个Sprin... 目录前言详细步骤一、本地配置DeepSeek二、SpringBoot项目调用本地DeepSeek前言随着人工智能技

通过Docker Compose部署MySQL的详细教程

《通过DockerCompose部署MySQL的详细教程》DockerCompose作为Docker官方的容器编排工具,为MySQL数据库部署带来了显著优势,下面小编就来为大家详细介绍一... 目录一、docker Compose 部署 mysql 的优势二、环境准备与基础配置2.1 项目目录结构2.2 基

CentOS 7部署主域名服务器 DNS的方法

《CentOS7部署主域名服务器DNS的方法》文章详细介绍了在CentOS7上部署主域名服务器DNS的步骤,包括安装BIND服务、配置DNS服务、添加域名区域、创建区域文件、配置反向解析、检查配置... 目录1. 安装 BIND 服务和工具2.  配置 BIND 服务3 . 添加你的域名区域配置4.创建区域

Spring AI ectorStore的使用流程

《SpringAIectorStore的使用流程》SpringAI中的VectorStore是一种用于存储和检索高维向量数据的数据库或存储解决方案,它在AI应用中发挥着至关重要的作用,本文给大家介... 目录一、VectorStore的基本概念二、VectorStore的核心接口三、VectorStore的

OpenManus本地部署实战亲测有效完全免费(最新推荐)

《OpenManus本地部署实战亲测有效完全免费(最新推荐)》文章介绍了如何在本地部署OpenManus大语言模型,包括环境搭建、LLM编程接口配置和测试步骤,本文给大家讲解的非常详细,感兴趣的朋友一... 目录1.概况2.环境搭建2.1安装miniconda或者anaconda2.2 LLM编程接口配置2

python之流程控制语句match-case详解

《python之流程控制语句match-case详解》:本文主要介绍python之流程控制语句match-case使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录match-case 语法详解与实战一、基础值匹配(类似 switch-case)二、数据结构解构匹

大数据spark3.5安装部署之local模式详解

《大数据spark3.5安装部署之local模式详解》本文介绍了如何在本地模式下安装和配置Spark,并展示了如何使用SparkShell进行基本的数据处理操作,同时,还介绍了如何通过Spark-su... 目录下载上传解压配置jdk解压配置环境变量启动查看交互操作命令行提交应用spark,一个数据处理框架

国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)

《国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)》本文给大家利用deepseek模型搭建私有知识问答库的详细步骤和遇到的问题及解决办法,感兴趣的朋友一起看看吧... 目录1. 第1步大家在安装完ollama后,需要到系统环境变量中添加两个变量2. 第3步 “在cmd中