Hikyuu教程:简单波动率(EMV)择时交易系统的构建与实现

2024-06-07 13:36

本文主要是介绍Hikyuu教程:简单波动率(EMV)择时交易系统的构建与实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今日,我们将探讨如何借助 hikyuu 框架实现简单波动指标 EMV 的择时系统。与以往稍有不同的是,本次我们将采用策略部件仓库的写法来完成示例代码,以便大家进一步了解和熟悉仓库的使用方法。

什么是简易波动指标(EMV)

首先,我们需要了解EMV指标的基本原理。简易波动指标(EMV),是为数不多的考虑价量关系的技术指标。在股价下跌的过程中,由于买盘力量的逐渐减弱,成交量会相应减少,进而导致EMV数值的下降。当股价跌至某一合理的支撑区域时,低价买入的订单会重新激活市场,使得成交量再度增加,此时EMV数值也会相应上升。当EMV数值由负转正并逐渐趋近于零时,这通常意味着有坚定的资金成功扭转了股价的下跌趋势,市场行情开始反转上扬,并发出新的买入信号。

关于EMV的计算方法,具体步骤如下:

  1. 计算MID值,MID = (TH + TL) / 2 - (YH + YL) / 2。其中,TH代表当天最高价,TL代表当天最低价,YH代表前日最高价,YL代表前日最低价。MID值大于零意味着当天的平均价格高于前日的平均价格。
  2. 计算BRO值,BRO = VOL / (H - L)。其中,VOL代表交易量,H和L分别代表同一天的最高价和最低价。
  3. 计算EM值,EM = MID / BRO。
  4. 计算EMV值,EMV为EM的N日简单移动平均值。

通过以上步骤,我们可以得到EMV指标的具体数值。

实现 EMV 指标

通过 shell 进入本地 hub 目录,输入如下代码: “python setup.py create -t ind -n emv”,如:
在这里插入图片描述

该命令将在 ind 目录下生成 part.py 和 test.py 两个文件,修改 part.py 来实现 EMV:
在这里插入图片描述

接着可以在 test.py 中进行测试,比如我们在其中绘制 emv 的曲线,如:
在这里插入图片描述

现在,可以直接在 ipython 中使用 emv,比如:

In [6]: s = sm['sh000001']
In [7]: k = s.get_kdata(Query(Datetime(20190101)))
In [8]: ind = get_part("start.ind.emv")
In [9]: ind(k).plot()

在这里插入图片描述

实现 EMV 择时系统

现在,我们使用 EMV 指标来实现一个择时系统:EMV 在0 以下表示弱势,在0 以上表示强势;EMV 由负转正应买进,由正转负应卖出。

同样,在 shell 中键入 “python setup.py create -t sys -n emv择时”,然后修改 part.py 文件:

def part(n: int = 14, tm: TradeManager = None) -> System:"""使用简易波动率指标(EMV)的交易系统。EMV 在0 以下表示弱势,在0 以上表示强势;EMV 由负转正应买进,由正转负应卖出。"""local_hub = get_current_hub(__file__)emv = get_part(f'{local_hub}.ind.emv', n=n)my_sg = SG_Bool(emv > 0, emv <= 0)my_tm = crtTM() if tm is None else tmmy_mm = MM_Nothing()my_sys = SYS_Simple(tm=my_tm, sg=my_sg, mm=my_mm)return my_sys

在 test.py 中,以平安银行为例,来测试这个择时系统策略:

from hikyuu.interactive import *
try:from .part import *
except:from part import *import sys
if sys.platform == 'win32':import osos.system('chcp 65001')if __name__ == "__main__":local_hub = get_current_hub(__file__)update_hub(local_hub)my_sys = get_part(f"{local_hub}.sys.emv择时")print(my_sys)if len(sys.argv) <= 1:import matplotlib.pylab as pltstk = sm['sz000001']my_sys.run(stk, Query(Datetime(20120101)))my_sys.performance()plt.show()

在这里插入图片描述

交易成本的影响

上面的测试中,已平仓交易总数166次,结合之前 EMV 指标图可以看到,这个系统的交易频次是比较高的。众所周知,交易频次越高交易成本的影响就越大,而上面默认创建的 TM 是使用的零成本进行的计算,那么让我们看看加入交易成本后,系统的盈利情况。

使用交易成本,只需要创建一个带有交易成本计算函数的 TM 实例并赋值给 SYS 即可,如下所示。

	my_tm = crtTM(Datetime(20120101), init_cash=100000,cost_func=TC_FixedA2017())my_sys.tm = my_tmmy_sys.run(stk, Query(Datetime(20120101)))my_sys.performance()

在这里插入图片描述
原本还有 0.98% 盈利的系统,现在直接亏到 -53%!

为什么使用 hub 的方式

hub 本质是一种规范的命名和组织方式,实际上使用 python 包和函数也是可以的。但规范的命名和组织会带来一些额外的方便,比如更好的文件目录拷贝粘贴修改,还有像下面这样,我们可以快速比较目前已经完成的 “趋势双均线、趋势布林带、emv择时”系统,下面的示例在 jupyter 中执行:

%matplotlib inline
%time from hikyuu.interactive import *# 定义回测时间
start_date = Datetime(20200101)
end_date = Datetime(20240501)
query = Query(start_date, end_date)# 指定分析对象
stk = sm['sh510050']
k = stk.get_kdata(Query(start_date, end_date))# 定义回测账户,并指定成本算法
my_tm = crtTM(start_date, init_cash=100000, cost_func=TC_FixedA2017())for name in ('趋势双均线', '趋势布林带', 'emv择时'):my_sys = get_part(f"start.sys.{name}")my_sys.tm = my_tmmy_sys.run(stk, query)my_sys.performance()

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这篇关于Hikyuu教程:简单波动率(EMV)择时交易系统的构建与实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1039320

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu2289(简单二分)

虽说是简单二分,但是我还是wa死了  题意:已知圆台的体积,求高度 首先要知道圆台体积怎么求:设上下底的半径分别为r1,r2,高为h,V = PI*(r1*r1+r1*r2+r2*r2)*h/3 然后以h进行二分 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#includ

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo