Nyoj 530 K steps[矩阵乘法求两点k步的方案数]

2024-06-07 03:38

本文主要是介绍Nyoj 530 K steps[矩阵乘法求两点k步的方案数],希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=530

题目的意思很是简单,给你一个图,n个节点m条边。。(n最大100,m最大1000)。。。问走k步,有多少种方案。。最后mod 1991。。。(k最大为1000)。。

对于每个图。。。每次询问l次。。(l最大1000)。。

需要注意的是有重边。。。并且重边是不同的。。。。。。

学习了一下。。。Matrix67大牛的总结。。很是在理。。。。

经典题目8 给定一个有向图,问从A点恰好走k步(允许重复经过边)到达B点的方案数mod p的值
    把给定的图转为邻接矩阵,即A(i,j)=1当且仅当存在一条边i->j。令C=A*A,那么C(i,j)=ΣA(i,k)*A(k,j),实际上就等于从点i到点j恰好经过2条边的路径数(枚举k为中转点)。类似地,C*A的第i行第j列就表示从i到j经过3条边的路径数。同理,如果要求经过k步的路径数,我们只需要二分求出A^k即可。

有点floyd的思想。。。。

有了这个知识背景,简直就是裸题。。。。。

Code:

 
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;const int N = 105;
const int mod = 1991;
struct Matrix
{int n;int a[N][N];Matrix() {memset(a, 0, sizeof(a));// kidding me .}Matrix(int ax){n = ax;memset(a, 0, sizeof(a));}
} ans, A;Matrix operator * (Matrix a, Matrix b)
{Matrix tmpans;tmpans.n = a.n;for(int i = 1; i <= a.n; i ++){for(int j = 1; j <= a.n; j ++){for(int k = 1; k <= a.n; k ++)tmpans.a[i][j] = (tmpans.a[i][j] + a.a[i][k] * b.a[k][j]) % mod;
//            printf("k = %d\n", tmpans.a[i][j]);}}return tmpans;
}void power(int k)
{while(k){if(k & 1) ans = ans * A;A = A * A;k = k >> 1;}
}int main()
{
//    freopen("1.txt", "r", stdin);int T;cin >> T;while(T --){int n, m, k, l;memset(A.a, 0, sizeof(A.a));memset(ans.a, 0, sizeof(ans.a));cin >> n >> m >> k >> l;A.n = n; ans.n = n;int x, y;for(int i = 1; i <= m; i ++){cin >> x >> y;A.a[x][y] = A.a[x][y] + 1;}for(int i = 1; i <= n; i ++){ans.a[i][i] = 1;}power(k);for(int i = 1; i <= l; i ++){cin >> x >> y;cout << ans.a[x][y] % mod << endl;}}return 0;
}


Matrix67大牛是总结还剩下最后一个。。。+u。。。明天就要看完了。。。

这篇关于Nyoj 530 K steps[矩阵乘法求两点k步的方案数]的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1038070

相关文章

Java解析JSON的六种方案

《Java解析JSON的六种方案》这篇文章介绍了6种JSON解析方案,包括Jackson、Gson、FastJSON、JsonPath、、手动解析,分别阐述了它们的功能特点、代码示例、高级功能、优缺点... 目录前言1. 使用 Jackson:业界标配功能特点代码示例高级功能优缺点2. 使用 Gson:轻量

Redis KEYS查询大批量数据替代方案

《RedisKEYS查询大批量数据替代方案》在使用Redis时,KEYS命令虽然简单直接,但其全表扫描的特性在处理大规模数据时会导致性能问题,甚至可能阻塞Redis服务,本文将介绍SCAN命令、有序... 目录前言KEYS命令问题背景替代方案1.使用 SCAN 命令2. 使用有序集合(Sorted Set)

MyBatis延迟加载的处理方案

《MyBatis延迟加载的处理方案》MyBatis支持延迟加载(LazyLoading),允许在需要数据时才从数据库加载,而不是在查询结果第一次返回时就立即加载所有数据,延迟加载的核心思想是,将关联对... 目录MyBATis如何处理延迟加载?延迟加载的原理1. 开启延迟加载2. 延迟加载的配置2.1 使用

Android WebView的加载超时处理方案

《AndroidWebView的加载超时处理方案》在Android开发中,WebView是一个常用的组件,用于在应用中嵌入网页,然而,当网络状况不佳或页面加载过慢时,用户可能会遇到加载超时的问题,本... 目录引言一、WebView加载超时的原因二、加载超时处理方案1. 使用Handler和Timer进行超

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

高效+灵活,万博智云全球发布AWS无代理跨云容灾方案!

摘要 近日,万博智云推出了基于AWS的无代理跨云容灾解决方案,并与拉丁美洲,中东,亚洲的合作伙伴面向全球开展了联合发布。这一方案以AWS应用环境为基础,将HyperBDR平台的高效、灵活和成本效益优势与无代理功能相结合,为全球企业带来实现了更便捷、经济的数据保护。 一、全球联合发布 9月2日,万博智云CEO Michael Wong在线上平台发布AWS无代理跨云容灾解决方案的阐述视频,介绍了

Android平台播放RTSP流的几种方案探究(VLC VS ExoPlayer VS SmartPlayer)

技术背景 好多开发者需要遴选Android平台RTSP直播播放器的时候,不知道如何选的好,本文针对常用的方案,做个大概的说明: 1. 使用VLC for Android VLC Media Player(VLC多媒体播放器),最初命名为VideoLAN客户端,是VideoLAN品牌产品,是VideoLAN计划的多媒体播放器。它支持众多音频与视频解码器及文件格式,并支持DVD影音光盘,VCD影

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +

JavaFX应用更新检测功能(在线自动更新方案)

JavaFX开发的桌面应用属于C端,一般来说需要版本检测和自动更新功能,这里记录一下一种版本检测和自动更新的方法。 1. 整体方案 JavaFX.应用版本检测、自动更新主要涉及一下步骤: 读取本地应用版本拉取远程版本并比较两个版本如果需要升级,那么拉取更新历史弹出升级控制窗口用户选择升级时,拉取升级包解压,重启应用用户选择忽略时,本地版本标志为忽略版本用户选择取消时,隐藏升级控制窗口 2.

如何选择SDR无线图传方案

在开源软件定义无线电(SDR)领域,有几个项目提供了无线图传的解决方案。以下是一些开源SDR无线图传方案: 1. **OpenHD**:这是一个远程高清数字图像传输的开源解决方案,它使用SDR技术来实现高清视频的无线传输。OpenHD项目提供了一个完整的工具链,包括发射器和接收器的硬件设计以及相应的软件。 2. **USRP(Universal Software Radio Periphera