VOJ 圣诞树 题解 最短路径 dijkstra算法

2024-06-07 01:20

本文主要是介绍VOJ 圣诞树 题解 最短路径 dijkstra算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

圣诞树

题目描述

圣诞节快到了,小明准备做一棵大圣诞树。

这棵树被表示成一组被编号的结点和一些边的集合,树的结点从 1 到 n 编号,树的根永远是 1。每个结点都有一个自身特有的数值,称为它的权重,各个结点的权重可能不同。对于一棵做完的树来说,每条边都有一个价值 v e ve ve,若设这条边 e 连接结点 i 和结点 j,且 i 为 j 的父结点(根是最老的祖先),则该边的价值 v e = s j ∗ w e ve=sj*we ve=sjwe s j sj sj 表示结点 j 的所有子孙及它自己的权重之和, w e we we 表示边 e 的权值。

现在小明想造一棵树,他有 m 条边可以选择,使得树上所有边的总价值最小,并且所有的点都在树上,因为小明喜欢大树。

输入描述

第一行输入两个整数 n 和 m (0≤n,m≤50,000),表示结点总数和可供选择的边数。
接下来输入一行,输入 n 个整数,依次表示每个结点的权重。
接下来输入 m 行,每行输入 3 个正整数 a,b,c(1≤a,b,≤n,1≤c≤10,000),表示结点 a 和结点 b 之间有一条权值为 c 的边可供造树选择。

输出描述

输出一行,如果构造不出这样的树,请输出 No Answer,否则输出一个整数,表示造树的最小价值。

样例 #1

样例输入 #1

4 4
10 20 30 40
1 2 3
2 3 2
1 3 5
2 4 1

样例输出 #1

370

思路

将总价值的含义转化一下,总价值就等于各个结点的权值与该结点到根结点路径长度的乘积之和。所以问题就被转化为了求根结点到各个结点的最短路径。采用 d i j k s t r a dijkstra dijkstra 算法求最短路径即可。

代码

#include <bits/stdc++.h>
using namespace std;
using i64 = long long;
typedef long long ll;const int maxn = 5e4 + 6;
const int maxm = 5e4 + 6;struct edge
{int to, len; // to为边的指向,len为边的长度即边权
};vector<edge> e[maxn]; // 存储以点i为起点的边struct node
{i64 dis;                            // dis为目前到该点的最短路长度int num;                            // num为该点序号bool operator>(const node &a) const // 小根堆中的大于号重载{return dis > a.dis;}
};i64 minDis[maxn];                                     // 从起点到第i个点的最短路长度
bool vis[maxn];                                       // 第i个点是否已确定最短路长度
priority_queue<node, vector<node>, greater<node>> pq; // 还未确定最短路长度的点存放在小根堆中void dijkstra(int n, int s) // n为点的个数,s为起点
{// 将最短路距离初始化为无穷大for (int i = 1; i <= n; i++){minDis[i] = 1e10;}minDis[s] = 0; // 起点到起点的最短路长度为0pq.push({0, s});while (!pq.empty()){int u = pq.top().num; // 有向边的起点pq.pop();if (vis[u]) // 若该点已确定最短路长度,跳过continue;vis[u] = 1;for (edge eg : e[u]) // 遍历以该点为起点的所有有向边{int v = eg.to;int w = eg.len;if (minDis[v] > minDis[u] + w) // 更新最短路长度{minDis[v] = minDis[u] + w;pq.push({minDis[v], v});}}}
}int main()
{ios::sync_with_stdio(0);cin.tie(0);// 问题转化为求根1到各个结点的最短路径长度int n, m, s; // 点的个数,有向边的个数,出发点的编号cin >> n >> m;vector<int> a(n + 1); // 点的权值for (int i = 1; i <= n; i++){cin >> a[i];}s = 1; // 起点为根结点int u, v, w;while (m--){cin >> u >> v >> w;e[u].push_back({v, w});e[v].push_back({u, w});}dijkstra(n, s);i64 ans = 0;bool ok = 1; // 是否能使得所有点都在树上for (int i = 1; i <= n; i++){if (minDis[i] == 1e10) // 最短路径为无穷大,说明无法使该结点连接到树上,所以构造不出包含所有结点的树{ok = 0;break;}ans += a[i] * minDis[i];}if (ok)cout << ans << '\n';elsecout << "No Answer\n";return 0;
}

这篇关于VOJ 圣诞树 题解 最短路径 dijkstra算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1037782

相关文章

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

如何用Python绘制简易动态圣诞树

《如何用Python绘制简易动态圣诞树》这篇文章主要给大家介绍了关于如何用Python绘制简易动态圣诞树,文中讲解了如何通过编写代码来实现特定的效果,包括代码的编写技巧和效果的展示,需要的朋友可以参考... 目录代码:效果:总结 代码:import randomimport timefrom math

python获取当前文件和目录路径的方法详解

《python获取当前文件和目录路径的方法详解》:本文主要介绍Python中获取当前文件路径和目录的方法,包括使用__file__关键字、os.path.abspath、os.path.realp... 目录1、获取当前文件路径2、获取当前文件所在目录3、os.path.abspath和os.path.re

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

hdu2544(单源最短路径)

模板题: //题意:求1到n的最短路径,模板题#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#i

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO