Orange Pi AI Pro 开箱 记录

2024-06-07 00:44
文章标签 ai 记录 pro 开箱 pi orange

本文主要是介绍Orange Pi AI Pro 开箱 记录,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

香橙派 AIpro(OrangePi AIpro)是一款面向AI开发的强大开发板,提供了高性能和多功能的开发环境。我将结合自己的开发经验,详细介绍这款开发板的性能、适用场景及使用体验。

一、产品概述

香橙派 AIpro配备了强大的硬件配置,包括8GB内存、电源、散热组件和32GB存储卡。这些硬件为AI开发提供了充足的资源和稳定的运行环境。

OrangePi AIpro(8T)采用昇腾AI技术路线,4核64位处理器+AI处理器,集成图形处理器,支持8TOPS AI算力,拥有8GB/16GB LPDDR4X,可以外接32GB/64GB/128GB/256GB eMMC模块,支持双4K高清输出。 Orange Pi AIpro引用了相当丰富的接口,包括两个HDMI输出、GPIO接口、Type-C电源接口、支持SATA/NVMe SSD 2280的M.2插槽、TF插槽、千兆网口、两个USB3.0、一个USB Type-C 3.0、一个Micro USB(串口打印调试功能)、两个MIPI摄像头、一个MIPI屏等,预留电池接口,可广泛适用于AI边缘计算、深度视觉学习及视频流AI分析、视频图像分析、自然语言处理、智能小车、机械臂、人工智能、无人机、云计算、AR/VR、智能安防、智能家居等领域,覆盖 AIoT各个行业。 Orange Pi AIpro支持Ubuntu、openEuler操作系统,满足大多数AI算法原型验证、推理应用开发的需求。

二、开发体验

1. 硬件安装

安装香橙派 AIpro非常简单,按照官方提供的说明书,连接好电源、散热组件和存储卡,整个过程不到三分钟。

到手后如图所示:有一个板子、一个充电器,然后板子上已经装好了风扇和sd卡,sd卡预装了 orange pi 的 linux 系统(系统是官方定制的Ubuntu20.04,也可以换为openEuler版本)。

2. 系统安装

香橙派 AIpro支持多种操作系统,包括Ubuntu和openEuler。到手的办卡已经内置了Ubuntu系统。如果需要替换,去官网论坛下载其他镜像,通过烧录工具将系统镜像写入存储卡后,插入开发板,接通电源即可启动。

下载地址:http://www.orangepi.cn/html/hardWare/computerAndMicrocontrollers/service-and-support/Orange-Pi-AIpro.html

3.开发板结构


4. 开发环境配置

登录方式主要有两种,一种是通过远程ssh,给香橙派插入网线,然后找到其局域网地址,ssh上即可。另一种是直接给开发板接屏幕、键盘、鼠标。我是后面这种方案。(如下图所示)。

由于Orange Pi AI Pro 已经内置了 wifi 模块,我单独准备的有:

  • 无线鼠标 x 1、无线键盘 x 1
  • 嵌入式屏幕 x 1、hdmi 线(用于连屏幕)x1

刚好我手上都有,所以直接开始下一步。

  • 分别给香橙派、屏幕供电,然后hdmi线连接屏幕,以及插上两个无线键盘鼠标的信号接收器就成功开机啦。【开发板上电后,LED指示灯绿色常亮,表示启动正常。】
  • 刚开机的时候风扇可能会声音比较大,开机后会保持稳定声音变的很小。
  • 效果如下图:

    在Ubuntu系统上,安装Python和TensorFlow等常用的AI开发工具。香橙派 AIpro的8GB内存在运行这些工具时表现出色,开发环境配置过程非常顺畅,没有出现卡顿或性能不足的情况。

三、性能测试

1 图片识别

为了测试香橙派 AIpro的性能,我选择了一个常见的机器学习任务——图像分类。在开发板上运行了一个预训练的卷积神经网络模型,整个推理过程非常流畅,处理速度也很快,充分展示了这款开发板的强大性能。

在 /opt/opi_test 下预置有一些测试代码可以体验。

香橙派默认密码:Mind@123

su # 记得需要root
cd /opt/opi_test
# 这里有很多测试代码,可供学习cd ResnetPicture/scripts/
bash sample_run.sh
# 如果这里报错大概率是没root登录导致的

2 手写数字识别

参考项目:https://gitee.com/ascend/EdgeAndRobotics/tree/master/Samples/HandWritingTrainAndInfer

git clone https://gitee.com/ascend/EdgeAndRobotics.git
# 切换到样例目录
cd EdgeAndRobotics/Samples/Mnist_For_Pytorch

Pytorch 安装参考官方文档:https://www.hiascend.com/document/detail/zh/canncommercial/700/envdeployment/instg/instg_0046.html

注意版本:PyTorch2.1.0、torchvision1.16.0

# torch_npu由于需要源码编译,速度可能较慢,本样例提供 python3.9,torch2.1版本的torch_npu whl包
wget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/wanzutao/torch_npu-2.1.0rc1-cp39-cp39-linux_aarch64.whl# 使用pip命令安装
pip3 install torch_npu-2.1.0rc1-cp39-cp39-linux_aarch64.whl

配置离线推理所需的环境变量:

# 配置程序编译依赖的头文件与库文件路径
export DDK_PATH=/usr/local/Ascend/ascend-toolkit/latest 
export NPU_HOST_LIB=$DDK_PATH/runtime/lib64/stub

安装离线推理所需的ACLLite库(参考https://gitee.com/ascend/ACLLite)
CANN版本要求: 7.0及以上社区版本。【参考https://www.hiascend.com/zh/document安装CANN】

# 我这里是ubuntu
apt-get install ffmpeg libavcodec-dev libswscale-dev libavdevice-dev
# 拉取ACLLite仓库,并进入目录
git clone https://gitee.com/ascend/ACLLite.git
cd ACLLite# 设置环境变量,其中DDK_PATH中/usr/local请替换为实际CANN包的安装路径
export DDK_PATH=/usr/local/Ascend/ascend-toolkit/latest
export NPU_HOST_LIB=$DDK_PATH/runtime/lib64/stub# 安装,编译过程中会将库文件安装到/lib目录下,所以会有sudo命令,需要输入密码
bash build_so.sh

到现在完成了基础环境的安装。下面是运行配置:
设置环境变量减小算子编译内存占用

export TE_PARALLEL_COMPILER=1
export MAX_COMPILE_CORE_NUMBER=1
# 运行训练脚本
python3 main.py

训练脚本后,会自动下载Mnist数据集,数据集目录结构如下:

├── dataset├──MNIST├──raw│──train-labels-idx1-ubyte.gz│──train-labels-idx1-ubyte│──train-images-idx3-ubyte.gz│──train-images-idx3-ubyte│──t10k-labels-idx1-ubyte.gz│──t10k-labels-idx1-ubyte│──t10k-images-idx3-ubyte.gz│──t10k-images-idx3-ubyte

执行以下命令,将训练生成的mnist.pt转换mnist.onnx模型:mnist.onnx模型生成在当前路径下

python3 export.py


执行以下命令,获取在线推理的测试图片。

cd data
wget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/wanzutao/mnist/8.jpg

执行在线推理。

cd ../onnxInfer/
python3 infer.py


模型可以正确识别为8。

因为我这里没有usb摄像头,所以就不进行目标检测的演示了。

四、适用场景

香橙派 AIpro适用于多种AI开发场景,包括但不限于:

  • 图像处理:高效的硬件支持图像分类、目标检测等任务,广泛应用于视频图像分析、智能安防等领域。
  • 自然语言处理:强大的计算能力使其能轻松处理文本生成、情感分析等任务,适用于自然语言处理和智能家居等应用。
  • 边缘计算:小巧的体积和低功耗设计,使其在边缘计算中具有显著优势,特别适用于AI边缘计算、智能小车、机械臂和无人机等场景。
  • 深度视觉学习和视频流AI分析:凭借其强大的性能,香橙派 AIpro在深度视觉学习和视频流AI分析中表现出色,可应用于AR/VR和智能安防等领域。
  • 云计算和AIoT:作为AIoT领域的重要设备,香橙派 AIpro覆盖了从云计算到各个AIoT行业的广泛需求。

五、使用感受

总体来说,香橙派 AIpro是一款性能优越的AI开发板,硬件配置强大,开发环境友好,适用于多种AI应用场景。特别是在图像处理和边缘计算方面,表现尤为出色。非常适合硬件创客去做一些DIY应用。

学习资料

香橙派AIpro快速上手指南
香橙派AIpro学习资源一站式导航

这篇关于Orange Pi AI Pro 开箱 记录的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1037699

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

MySQL INSERT语句实现当记录不存在时插入的几种方法

《MySQLINSERT语句实现当记录不存在时插入的几种方法》MySQL的INSERT语句是用于向数据库表中插入新记录的关键命令,下面:本文主要介绍MySQLINSERT语句实现当记录不存在时... 目录使用 INSERT IGNORE使用 ON DUPLICATE KEY UPDATE使用 REPLACE

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Spring Boot中定时任务Cron表达式的终极指南最佳实践记录

《SpringBoot中定时任务Cron表达式的终极指南最佳实践记录》本文详细介绍了SpringBoot中定时任务的实现方法,特别是Cron表达式的使用技巧和高级用法,从基础语法到复杂场景,从快速启... 目录一、Cron表达式基础1.1 Cron表达式结构1.2 核心语法规则二、Spring Boot中定

Spring AI ectorStore的使用流程

《SpringAIectorStore的使用流程》SpringAI中的VectorStore是一种用于存储和检索高维向量数据的数据库或存储解决方案,它在AI应用中发挥着至关重要的作用,本文给大家介... 目录一、VectorStore的基本概念二、VectorStore的核心接口三、VectorStore的

国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)

《国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)》本文给大家利用deepseek模型搭建私有知识问答库的详细步骤和遇到的问题及解决办法,感兴趣的朋友一起看看吧... 目录1. 第1步大家在安装完ollama后,需要到系统环境变量中添加两个变量2. 第3步 “在cmd中

Spring AI集成DeepSeek三步搞定Java智能应用的详细过程

《SpringAI集成DeepSeek三步搞定Java智能应用的详细过程》本文介绍了如何使用SpringAI集成DeepSeek,一个国内顶尖的多模态大模型,SpringAI提供了一套统一的接口,简... 目录DeepSeek 介绍Spring AI 是什么?Spring AI 的主要功能包括1、环境准备2