Orange Pi AI Pro 开箱 记录

2024-06-07 00:44
文章标签 ai 记录 pro 开箱 pi orange

本文主要是介绍Orange Pi AI Pro 开箱 记录,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

香橙派 AIpro(OrangePi AIpro)是一款面向AI开发的强大开发板,提供了高性能和多功能的开发环境。我将结合自己的开发经验,详细介绍这款开发板的性能、适用场景及使用体验。

一、产品概述

香橙派 AIpro配备了强大的硬件配置,包括8GB内存、电源、散热组件和32GB存储卡。这些硬件为AI开发提供了充足的资源和稳定的运行环境。

OrangePi AIpro(8T)采用昇腾AI技术路线,4核64位处理器+AI处理器,集成图形处理器,支持8TOPS AI算力,拥有8GB/16GB LPDDR4X,可以外接32GB/64GB/128GB/256GB eMMC模块,支持双4K高清输出。 Orange Pi AIpro引用了相当丰富的接口,包括两个HDMI输出、GPIO接口、Type-C电源接口、支持SATA/NVMe SSD 2280的M.2插槽、TF插槽、千兆网口、两个USB3.0、一个USB Type-C 3.0、一个Micro USB(串口打印调试功能)、两个MIPI摄像头、一个MIPI屏等,预留电池接口,可广泛适用于AI边缘计算、深度视觉学习及视频流AI分析、视频图像分析、自然语言处理、智能小车、机械臂、人工智能、无人机、云计算、AR/VR、智能安防、智能家居等领域,覆盖 AIoT各个行业。 Orange Pi AIpro支持Ubuntu、openEuler操作系统,满足大多数AI算法原型验证、推理应用开发的需求。

二、开发体验

1. 硬件安装

安装香橙派 AIpro非常简单,按照官方提供的说明书,连接好电源、散热组件和存储卡,整个过程不到三分钟。

到手后如图所示:有一个板子、一个充电器,然后板子上已经装好了风扇和sd卡,sd卡预装了 orange pi 的 linux 系统(系统是官方定制的Ubuntu20.04,也可以换为openEuler版本)。

2. 系统安装

香橙派 AIpro支持多种操作系统,包括Ubuntu和openEuler。到手的办卡已经内置了Ubuntu系统。如果需要替换,去官网论坛下载其他镜像,通过烧录工具将系统镜像写入存储卡后,插入开发板,接通电源即可启动。

下载地址:http://www.orangepi.cn/html/hardWare/computerAndMicrocontrollers/service-and-support/Orange-Pi-AIpro.html

3.开发板结构


4. 开发环境配置

登录方式主要有两种,一种是通过远程ssh,给香橙派插入网线,然后找到其局域网地址,ssh上即可。另一种是直接给开发板接屏幕、键盘、鼠标。我是后面这种方案。(如下图所示)。

由于Orange Pi AI Pro 已经内置了 wifi 模块,我单独准备的有:

  • 无线鼠标 x 1、无线键盘 x 1
  • 嵌入式屏幕 x 1、hdmi 线(用于连屏幕)x1

刚好我手上都有,所以直接开始下一步。

  • 分别给香橙派、屏幕供电,然后hdmi线连接屏幕,以及插上两个无线键盘鼠标的信号接收器就成功开机啦。【开发板上电后,LED指示灯绿色常亮,表示启动正常。】
  • 刚开机的时候风扇可能会声音比较大,开机后会保持稳定声音变的很小。
  • 效果如下图:

    在Ubuntu系统上,安装Python和TensorFlow等常用的AI开发工具。香橙派 AIpro的8GB内存在运行这些工具时表现出色,开发环境配置过程非常顺畅,没有出现卡顿或性能不足的情况。

三、性能测试

1 图片识别

为了测试香橙派 AIpro的性能,我选择了一个常见的机器学习任务——图像分类。在开发板上运行了一个预训练的卷积神经网络模型,整个推理过程非常流畅,处理速度也很快,充分展示了这款开发板的强大性能。

在 /opt/opi_test 下预置有一些测试代码可以体验。

香橙派默认密码:Mind@123

su # 记得需要root
cd /opt/opi_test
# 这里有很多测试代码,可供学习cd ResnetPicture/scripts/
bash sample_run.sh
# 如果这里报错大概率是没root登录导致的

2 手写数字识别

参考项目:https://gitee.com/ascend/EdgeAndRobotics/tree/master/Samples/HandWritingTrainAndInfer

git clone https://gitee.com/ascend/EdgeAndRobotics.git
# 切换到样例目录
cd EdgeAndRobotics/Samples/Mnist_For_Pytorch

Pytorch 安装参考官方文档:https://www.hiascend.com/document/detail/zh/canncommercial/700/envdeployment/instg/instg_0046.html

注意版本:PyTorch2.1.0、torchvision1.16.0

# torch_npu由于需要源码编译,速度可能较慢,本样例提供 python3.9,torch2.1版本的torch_npu whl包
wget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/wanzutao/torch_npu-2.1.0rc1-cp39-cp39-linux_aarch64.whl# 使用pip命令安装
pip3 install torch_npu-2.1.0rc1-cp39-cp39-linux_aarch64.whl

配置离线推理所需的环境变量:

# 配置程序编译依赖的头文件与库文件路径
export DDK_PATH=/usr/local/Ascend/ascend-toolkit/latest 
export NPU_HOST_LIB=$DDK_PATH/runtime/lib64/stub

安装离线推理所需的ACLLite库(参考https://gitee.com/ascend/ACLLite)
CANN版本要求: 7.0及以上社区版本。【参考https://www.hiascend.com/zh/document安装CANN】

# 我这里是ubuntu
apt-get install ffmpeg libavcodec-dev libswscale-dev libavdevice-dev
# 拉取ACLLite仓库,并进入目录
git clone https://gitee.com/ascend/ACLLite.git
cd ACLLite# 设置环境变量,其中DDK_PATH中/usr/local请替换为实际CANN包的安装路径
export DDK_PATH=/usr/local/Ascend/ascend-toolkit/latest
export NPU_HOST_LIB=$DDK_PATH/runtime/lib64/stub# 安装,编译过程中会将库文件安装到/lib目录下,所以会有sudo命令,需要输入密码
bash build_so.sh

到现在完成了基础环境的安装。下面是运行配置:
设置环境变量减小算子编译内存占用

export TE_PARALLEL_COMPILER=1
export MAX_COMPILE_CORE_NUMBER=1
# 运行训练脚本
python3 main.py

训练脚本后,会自动下载Mnist数据集,数据集目录结构如下:

├── dataset├──MNIST├──raw│──train-labels-idx1-ubyte.gz│──train-labels-idx1-ubyte│──train-images-idx3-ubyte.gz│──train-images-idx3-ubyte│──t10k-labels-idx1-ubyte.gz│──t10k-labels-idx1-ubyte│──t10k-images-idx3-ubyte.gz│──t10k-images-idx3-ubyte

执行以下命令,将训练生成的mnist.pt转换mnist.onnx模型:mnist.onnx模型生成在当前路径下

python3 export.py


执行以下命令,获取在线推理的测试图片。

cd data
wget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/wanzutao/mnist/8.jpg

执行在线推理。

cd ../onnxInfer/
python3 infer.py


模型可以正确识别为8。

因为我这里没有usb摄像头,所以就不进行目标检测的演示了。

四、适用场景

香橙派 AIpro适用于多种AI开发场景,包括但不限于:

  • 图像处理:高效的硬件支持图像分类、目标检测等任务,广泛应用于视频图像分析、智能安防等领域。
  • 自然语言处理:强大的计算能力使其能轻松处理文本生成、情感分析等任务,适用于自然语言处理和智能家居等应用。
  • 边缘计算:小巧的体积和低功耗设计,使其在边缘计算中具有显著优势,特别适用于AI边缘计算、智能小车、机械臂和无人机等场景。
  • 深度视觉学习和视频流AI分析:凭借其强大的性能,香橙派 AIpro在深度视觉学习和视频流AI分析中表现出色,可应用于AR/VR和智能安防等领域。
  • 云计算和AIoT:作为AIoT领域的重要设备,香橙派 AIpro覆盖了从云计算到各个AIoT行业的广泛需求。

五、使用感受

总体来说,香橙派 AIpro是一款性能优越的AI开发板,硬件配置强大,开发环境友好,适用于多种AI应用场景。特别是在图像处理和边缘计算方面,表现尤为出色。非常适合硬件创客去做一些DIY应用。

学习资料

香橙派AIpro快速上手指南
香橙派AIpro学习资源一站式导航

这篇关于Orange Pi AI Pro 开箱 记录的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1037699

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

AI行业应用(不定期更新)

ChatPDF 可以让你上传一个 PDF 文件,然后针对这个 PDF 进行小结和提问。你可以把各种各样你要研究的分析报告交给它,快速获取到想要知道的信息。https://www.chatpdf.com/

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件