卡尔曼滤波(Kalman Filtering)详细解读

2024-06-06 22:52

本文主要是介绍卡尔曼滤波(Kalman Filtering)详细解读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🧑‍🎓 个人主页:《爱蹦跶的大A阿》

🔥当前正在更新专栏:《VUE》 、《JavaScript保姆级教程》、《krpano》、《krpano中文文档》

​ 

✨ 前言

卡尔曼滤波(Kalman Filtering)是一种用于估计动态系统状态的递推算法,被广泛应用于控制系统、信号处理、经济学、导航和机器人学等领域。它是由瑞典数学家鲁道夫·卡尔曼(Rudolf E. Kalman)于1960年提出的,因其在多种应用中的卓越表现,被誉为20世纪最重要的发明之一。本文将从卡尔曼滤波的基本原理、数学推导、应用实例以及代码实现等方面进行详细解读,帮助读者深入理解这一强大的工具。

✨ 正文

卡尔曼滤波(Kalman Filtering)是一种用于估计动态系统状态的递推算法,被广泛应用于控制系统、信号处理、经济学、导航和机器人学等领域。它是由瑞典数学家鲁道夫·卡尔曼(Rudolf E. Kalman)于1960年提出的,因其在多种应用中的卓越表现,被誉为20世纪最重要的发明之一。本文将从卡尔曼滤波的基本原理、数学推导、应用实例以及代码实现等方面进行详细解读,帮助读者深入理解这一强大的工具。

一、卡尔曼滤波的基本原理

卡尔曼滤波是一种线性二次估计器,旨在通过对一系列带有噪声的观测数据进行处理,估计出系统的真实状态。其核心思想是基于贝叶斯理论,通过递归估计来不断更新系统的状态和协方差矩阵,从而获得最优估计。

1.1 系统模型

卡尔曼滤波假设系统可以用线性状态空间模型表示,即:

其中:

  • xkx_{k}xk​ 是时刻 kkk 的状态向量;
  • Ak−1A_{k-1}Ak−1​ 是状态转移矩阵;
  • Bk−1B_{k-1}Bk−1​ 是控制输入矩阵;
  • uk−1u_{k-1}uk−1​ 是控制向量;
  • wk−1w_{k-1}wk−1​ 是过程噪声,假设为零均值高斯噪声,协方差为 Qk−1Q_{k-1}Qk−1​;
  • zkz_{k}zk​ 是时刻 kkk 的观测向量;
  • HkH_{k}Hk​ 是观测矩阵;
  • vkv_{k}vk​ 是观测噪声,假设为零均值高斯噪声,协方差为 RkR_{k}Rk​。

1.2 卡尔曼滤波的两大步骤

卡尔曼滤波主要分为预测(Predict)和更新(Update)两个步骤:

  1. 预测步骤: 在时刻 k−1k-1k−1 已知状态估计 x^k−1∣k−1\hat{x}_{k-1|k-1}x^k−1∣k−1​ 和协方差矩阵 Pk−1∣k−1P_{k-1|k-1}Pk−1∣k−1​ 的情况下,预测时刻 kkk 的状态和协方差矩阵:

  2. 更新步骤: 在得到时刻 kkk 的观测值 zkz_{k}zk​ 后,更新状态估计和协方差矩阵:

二、卡尔曼滤波的数学推导

为了更深入理解卡尔曼滤波,我们需要从概率的角度推导其更新公式。

2.1 预测步骤推导

预测步骤基于系统的状态转移模型,计算在没有观测信息时对下一个时刻状态的估计。

根据系统状态方程:

2.2 更新步骤推导

更新步骤结合观测信息,利用贝叶斯定理修正预测结果。

观测方程为:

 

三、卡尔曼滤波的应用实例

为了更好地理解卡尔曼滤波的应用,我们将介绍两个经典的实例:位置跟踪和金融数据预测。

3.1 位置跟踪

在位置跟踪应用中,卡尔曼滤波可以用来估计物体的当前位置和速度。

假设物体的运动模型为:

 

3.2 金融数据预测

在金融数据预测中,卡尔曼滤波可以用来估计和预测股票价格。

假设股票价格的变动遵循随机游走模型:

使用卡尔曼滤波可以递推估计当前的股票价格,并根据历史数据进行预测。

四、卡尔曼滤波的代码实现

下面我们将展示卡尔曼滤波的Python实现,以位置跟踪为例。

import numpy as npclass KalmanFilter:def __init__(self, A, B, H, Q, R, P, x0):self.A = A  # 状态转移矩阵self.B = B  # 控制输入矩阵self.H = H  # 观测矩阵self.Q = Q  # 过程噪声协方差矩阵self.R = R  # 观测噪声协方差矩阵self.P = P  # 估计误差协方差矩阵self.x = x0 # 初始状态估计def predict(self, u):# 状态预测self.x = np.dot(self.A, self.x) + np.dot(self.B, u)# 误差协方差预测self.P = np.dot(np.dot(self.A, self.P), self.A.T) + self.Qdef update(self, z):# 卡尔曼增益S = np.dot(np.dot(self.H, self.P), self.H.T) + self.RK = np.dot(np.dot(self.P, self.H.T), np.linalg.inv(S))# 更新状态估计self.x = self.x + np.dot(K, (z - np.dot(self.H, self.x)))# 更新误差协方差I = np.eye(self.P.shape[0])self.P = np.dot(np.dot(I - np.dot(K, self.H), self.P), (I - np.dot(K, self.H)).T) + np.dot(np.dot(K, self.R), K.T)# 示例参数设置
dt = 1.0  # 时间间隔
A = np.array([[1, dt], [0, 1]])  # 状态转移矩阵
B = np.array([[0.5*dt**2], [dt]])  # 控制输入矩阵
H = np.array([[1, 0]])  # 观测矩阵
Q = np.array([[0.1, 0], [0, 0.1]])  # 过程噪声协方差
R = np.array([[1]])  # 观测噪声协方差
P = np.eye(2)  # 初始误差协方差
x0 = np.array([0, 1])  # 初始状态kf = KalmanFilter(A, B, H, Q, R, P, x0)# 模拟控制输入和观测
u = np.array([0])  # 假设没有控制输入
measurements = [np.array([1]), np.array([2]), np.array([3])]  # 观测数据for z in measurements:kf.predict(u)  # 预测步骤kf.update(z)   # 更新步骤print(f"状态估计: {kf.x}")

 

五、卡尔曼滤波的扩展

        卡尔曼滤波虽然强大,但也有局限性。例如,它假设系统是线性且噪声服从高斯分布。对于非线性系统,可以使用扩展卡尔曼滤波(EKF)或无迹卡尔曼滤波(UKF)。这些滤波器在处理非线性问题时表现更优。

5.1 扩展卡尔曼滤波

        扩展卡尔曼滤波通过对非线性系统进行线性化处理,适用于处理小非线性的系统。其主要步骤如下:

  1. 预测步骤: 使用非线性状态转移方程进行状态预测:

  2. 更新步骤: 使用非线性观测方程进行状态更新:

5.2 无迹卡尔曼滤波

        无迹卡尔曼滤波采用无迹变换来处理非线性系统,其不需要对系统进行线性化,适用于强非线性系统。

无迹卡尔曼滤波的主要步骤包括:

  1. 生成一组无迹采样点;
  2. 通过非线性函数传播这些采样点;
  3. 根据传播后的采样点计算状态估计和协方差矩阵。

无迹卡尔曼滤波的具体实现较为复杂,这里不做详细展开。

 

✨ 结语

        卡尔曼滤波是一种强大的估计工具,广泛应用于各个领域。通过递推估计和贝叶斯理论,卡尔曼滤波能够在有噪声的观测数据中有效地估计系统的真实状态。虽然它有一定的局限性,但扩展卡尔曼滤波和无迹卡尔曼滤波等变种进一步扩展了其应用范围。通过实际应用和代码实现,可以更好地理解卡尔曼滤波的工作原理和效果。

希望本文能够帮助读者深入理解卡尔曼滤波,并在实际工作中灵活应用这一工具。

这篇关于卡尔曼滤波(Kalman Filtering)详细解读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1037459

相关文章

MCU7.keil中build产生的hex文件解读

1.hex文件大致解读 闲来无事,查看了MCU6.用keil新建项目的hex文件 用FlexHex打开 给我的第一印象是:经过软件的解释之后,发现这些数据排列地十分整齐 :02000F0080FE71:03000000020003F8:0C000300787FE4F6D8FD75810702000F3D:00000001FF 把解释后的数据当作十六进制来观察 1.每一行数据

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

Spring 源码解读:自定义实现Bean定义的注册与解析

引言 在Spring框架中,Bean的注册与解析是整个依赖注入流程的核心步骤。通过Bean定义,Spring容器知道如何创建、配置和管理每个Bean实例。本篇文章将通过实现一个简化版的Bean定义注册与解析机制,帮助你理解Spring框架背后的设计逻辑。我们还将对比Spring中的BeanDefinition和BeanDefinitionRegistry,以全面掌握Bean注册和解析的核心原理。

沁恒CH32在MounRiver Studio上环境配置以及使用详细教程

目录 1.  RISC-V简介 2.  CPU架构现状 3.  MounRiver Studio软件下载 4.  MounRiver Studio软件安装 5.  MounRiver Studio软件介绍 6.  创建工程 7.  编译代码 1.  RISC-V简介         RISC就是精简指令集计算机(Reduced Instruction SetCom

arduino ide安装详细步骤

​ 大家好,我是程序员小羊! 前言: Arduino IDE 是一个专为编程 Arduino 微控制器设计的集成开发环境,使用起来非常方便。下面将介绍如何在不同平台上安装 Arduino IDE 的详细步骤,包括 Windows、Mac 和 Linux 系统。 一、在 Windows 上安装 Arduino IDE 1. 下载 Arduino IDE 打开 Arduino 官网

GPT系列之:GPT-1,GPT-2,GPT-3详细解读

一、GPT1 论文:Improving Language Understanding by Generative Pre-Training 链接:https://cdn.openai.com/research-covers/languageunsupervised/language_understanding_paper.pdf 启发点:生成loss和微调loss同时作用,让下游任务来适应预训

多路转接之select(fd_set介绍,参数详细介绍),实现非阻塞式网络通信

目录 多路转接之select 引入 介绍 fd_set 函数原型 nfds readfds / writefds / exceptfds readfds  总结  fd_set操作接口  timeout timevalue 结构体 传入值 返回值 代码 注意点 -- 调用函数 select的参数填充  获取新连接 注意点 -- 通信时的调用函数 添加新fd到

【详细介绍一下GEE】

GEE(Google Earth Engine)是一个强大的云计算平台,它允许用户处理和分析大规模的地球科学数据集,如卫星图像、气候模型输出等。以下是对GEE用法的详细介绍: 一、平台访问与账户设置 访问GEE平台: 用户可以通过访问Google Earth Engine的官方网站来开始使用GEE。 创建账户: 用户需要注册并登录Google账户,然后申请访问GEE平台。申请过程可能需要提

专题二_滑动窗口_算法专题详细总结

目录 滑动窗口,引入: 滑动窗口,本质:就是同向双指针; 1.⻓度最⼩的⼦数组(medium) 1.解析:给我们一个数组nums,要我们找出最小子数组的和==target,首先想到的就是暴力解法 1)暴力: 2)优化,滑动窗口: 1.进窗口 2.出窗口 3.更新值 2.⽆重复字符的最⻓⼦串(medium) 1)仍然是暴力解法: 2)优化: 进窗口:hash[s[rig

单位权中误差 详细介绍

单位权中误差(Unit Weight Error, UWE)是用于描述测量数据不确定性的一个统计量,特别是在地理信息系统(GIS)、导航和定位系统中。它主要用于评估和比较不同测量系统或算法的精度。以下是对单位权中误差的详细介绍: 1. 基本概念 单位权中误差(UWE): 定义:单位权中误差表示每个观测值(测量值)在估算中的标准误差。它是误差的一个统计量,主要用于评估测量系统的精度。单位:通常