每日一题34:数据分组之查找每个员工花费的总时间

2024-06-06 22:04

本文主要是介绍每日一题34:数据分组之查找每个员工花费的总时间,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、每日一题

表: Employees

+-------------+------+
| Column Name | Type |
+-------------+------+
| emp_id      | int  |
| event_day   | date |
| in_time     | int  |
| out_time    | int  |
+-------------+------+
在 SQL 中,(emp_id, event_day, in_time) 是这个表的主键。
该表显示了员工在办公室的出入情况。
event_day 是此事件发生的日期,in_time 是员工进入办公室的时间,而 out_time 是他们离开办公室的时间。
in_time 和 out_time 的取值在1到1440之间。
题目保证同一天没有两个事件在时间上是相交的,并且保证 in_time 小于 out_time。

计算每位员工每天在办公室花费的总时间(以分钟为单位)。 请注意,在一天之内,同一员工是可以多次进入和离开办公室的。 在办公室里一次进出所花费的时间为out_time 减去 in_time。

返回结果表单的顺序无要求。
查询结果的格式如下:

示例 1:

输入:
Employees table:
+--------+------------+---------+----------+
| emp_id | event_day  | in_time | out_time |
+--------+------------+---------+----------+
| 1      | 2020-11-28 | 4       | 32       |
| 1      | 2020-11-28 | 55      | 200      |
| 1      | 2020-12-03 | 1       | 42       |
| 2      | 2020-11-28 | 3       | 33       |
| 2      | 2020-12-09 | 47      | 74       |
+--------+------------+---------+----------+
输出:
+------------+--------+------------+
| day        | emp_id | total_time |
+------------+--------+------------+
| 2020-11-28 | 1      | 173        |
| 2020-11-28 | 2      | 30         |
| 2020-12-03 | 1      | 41         |
| 2020-12-09 | 2      | 27         |
+------------+--------+------------+
解释:
雇员 1 有三次进出: 有两次发生在 2020-11-28 花费的时间为 (32 - 4) + (200 - 55) = 173, 有一次发生在 2020-12-03 花费的时间为 (42 - 1) = 41。
雇员 2 有两次进出: 有一次发生在 2020-11-28 花费的时间为 (33 - 3) = 30,  有一次发生在 2020-12-09 花费的时间为 (74 - 47) = 27。

解答:

import pandas as pddef total_time(employees: pd.DataFrame) -> pd.DataFrame:employees['total_time'] = employees['out_time'] - employees['in_time']result = employees.groupby(['event_day', 'emp_id'])['total_time'].sum().reset_index()result = result.rename(columns = {'event_day': 'day'})result = result[['day', 'emp_id', 'total_time']]return result

题源:Leetcode 

二、总结

这里需要注意的是reset_index(),代码中通过聚类然后进行sum()操作,为了避免将原索引并入内容中,故进行reset_index()使得索引还是原来的索引。

换句话说,在上面的代码中,进行聚合操作后,可能会产生层次化的索引,其中 “event_day” 和 “emp_id” 可能会成为索引的一部分。

2024.6.6

这篇关于每日一题34:数据分组之查找每个员工花费的总时间的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1037355

相关文章

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

Python实现数据清洗的18种方法

《Python实现数据清洗的18种方法》本文主要介绍了Python实现数据清洗的18种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1. 去除字符串两边空格2. 转换数据类型3. 大小写转换4. 移除列表中的重复元素5. 快速统

Python数据处理之导入导出Excel数据方式

《Python数据处理之导入导出Excel数据方式》Python是Excel数据处理的绝佳工具,通过Pandas和Openpyxl等库可以实现数据的导入、导出和自动化处理,从基础的数据读取和清洗到复杂... 目录python导入导出Excel数据开启数据之旅:为什么Python是Excel数据处理的最佳拍档

在Pandas中进行数据重命名的方法示例

《在Pandas中进行数据重命名的方法示例》Pandas作为Python中最流行的数据处理库,提供了强大的数据操作功能,其中数据重命名是常见且基础的操作之一,本文将通过简洁明了的讲解和丰富的代码示例,... 目录一、引言二、Pandas rename方法简介三、列名重命名3.1 使用字典进行列名重命名3.编

Python 标准库time时间的访问和转换问题小结

《Python标准库time时间的访问和转换问题小结》time模块为Python提供了处理时间和日期的多种功能,适用于多种与时间相关的场景,包括获取当前时间、格式化时间、暂停程序执行、计算程序运行时... 目录模块介绍使用场景主要类主要函数 - time()- sleep()- localtime()- g

Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南

《Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南》在日常数据处理工作中,我们经常需要将不同Excel文档中的数据整合到一个新的DataFrame中,以便进行进一步... 目录一、准备工作二、读取Excel文件三、数据叠加四、处理重复数据(可选)五、保存新DataFram

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加