Mysql Join语法解析与性能分析--通过集合来看join

2024-06-06 17:38

本文主要是介绍Mysql Join语法解析与性能分析--通过集合来看join,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一.Join语法概述

join 用于多表中字段之间的联系,语法如下:

... FROM table1 INNER|LEFT|RIGHT JOIN table2 ON conditiona

table1:左表;table2:右表。

JOIN 按照功能大致分为如下三类:

INNER JOIN(内连接,或等值连接):取得两个表中存在连接匹配关系的记录。

LEFT JOIN(左连接):取得左表(table1)完全记录,即是右表(table2)并无对应匹配记录。

RIGHT JOIN(右连接):与 LEFT JOIN 相反,取得右表(table2)完全记录,即是左表(table1)并无匹配对应记录。

注意:mysql不支持Full join,不过可以通过UNION 关键字来合并 LEFT JOIN 与 RIGHT JOIN来模拟FULL join.

接下来给出一个列子用于解释下面几种分类。如下两个表(A,B)

mysql> select A.id,A.name,B.name from A,B where A.id=B.id;
+----+-----------+-------------+
| id | name       | name             |
+----+-----------+-------------+
|  1 | Pirate       | Rutabaga      |
|  2 | Monkey    | Pirate            |
|  3 | Ninja         | Darth Vader |
|  4 | Spaghetti  | Ninja             |
+----+-----------+-------------+
4 rows in set (0.00 sec)

二.Inner join

内连接,也叫等值连接,inner join产生同时符合A和B的一组数据。

mysql> select * from A inner join B on A.name = B.name;
+----+--------+----+--------+
| id | name   | id | name   |
+----+--------+----+--------+
|  1 | Pirate |  2 | Pirate |
|  3 | Ninja  |  4 | Ninja  |
+----+--------+----+--------+

三.Left join

mysql> select * from A left join B on A.name = B.name;
#或者:select * from A left outer join B on A.name = B.name;+----+-----------+------+--------+
| id | name      | id   | name   |
+----+-----------+------+--------+
|  1 | Pirate    |    2 | Pirate |
|  2 | Monkey    | NULL | NULL   |
|  3 | Ninja     |    4 | Ninja  |
|  4 | Spaghetti | NULL | NULL   |
+----+-----------+------+--------+
4 rows in set (0.00 sec)

left join,(或left outer join:在Mysql中两者等价,推荐使用left join.)左连接从左表(A)产生一套完整的记录,与匹配的记录(右表(B)) .如果没有匹配,右侧将包含null。

如果想只从左表(A)中产生一套记录,但不包含右表(B)的记录,可以通过设置where语句来执行,如下:

mysql> select * from A left join B on A.name=B.name where A.id is null or B.id is null;
+----+-----------+------+------+
| id | name      | id   | name |
+----+-----------+------+------+
|  2 | Monkey    | NULL | NULL |
|  4 | Spaghetti | NULL | NULL |
+----+-----------+------+------+
2 rows in set (0.00 sec)

同理,还可以模拟inner join. 如下:

mysql> select * from A left join B on A.name=B.name where A.id is not null and B.id is not null;
+----+--------+------+--------+
| id | name   | id   | name   |
+----+--------+------+--------+
|  1 | Pirate |    2 | Pirate |
|  3 | Ninja  |    4 | Ninja  |
+----+--------+------+--------+
2 rows in set (0.00 sec)

求差集:

根据上面的例子可以求差集,如下:

SELECT * FROM A LEFT JOIN B ON A.name = B.name
WHERE B.id IS NULL
union
SELECT * FROM A right JOIN B ON A.name = B.name
WHERE A.id IS NULL;
# 结果+------+-----------+------+-------------+
| id   | name      | id   | name        |
+------+-----------+------+-------------+
|    2 | Monkey    | NULL | NULL        |
|    4 | Spaghetti | NULL | NULL        |
| NULL | NULL      |    1 | Rutabaga    |
| NULL | NULL      |    3 | Darth Vader |
+------+-----------+------+-------------+

四.Right join

mysql> select * from A right join B on A.name = B.name;
+------+--------+----+-------------+
| id   | name   | id | name        |
+------+--------+----+-------------+
| NULL | NULL   |  1 | Rutabaga    |
|    1 | Pirate |  2 | Pirate      |
| NULL | NULL   |  3 | Darth Vader |
|    3 | Ninja  |  4 | Ninja       |
+------+--------+----+-------------+
4 rows in set (0.00 sec)

同left join。

五.Cross join

cross join:交叉连接,得到的结果是两个表的乘积,即笛卡尔积

笛卡尔(Descartes)乘积又叫直积。假设集合A={a,b},集合B={0,1,2},则两个集合的笛卡尔积为{(a,0),(a,1),(a,2),(b,0),(b,1), (b,2)}。可以扩展到多个集合的情况。类似的例子有,如果A表示某学校学生的集合,B表示该学校所有课程的集合,则A与B的笛卡尔积表示所有可能的选课情况。

mysql> select * from A cross join B;
+----+-----------+----+-------------+
| id | name      | id | name        |
+----+-----------+----+-------------+
|  1 | Pirate    |  1 | Rutabaga    |
|  2 | Monkey    |  1 | Rutabaga    |
|  3 | Ninja     |  1 | Rutabaga    |
|  4 | Spaghetti |  1 | Rutabaga    |
|  1 | Pirate    |  2 | Pirate      |
|  2 | Monkey    |  2 | Pirate      |
|  3 | Ninja     |  2 | Pirate      |
|  4 | Spaghetti |  2 | Pirate      |
|  1 | Pirate    |  3 | Darth Vader |
|  2 | Monkey    |  3 | Darth Vader |
|  3 | Ninja     |  3 | Darth Vader |
|  4 | Spaghetti |  3 | Darth Vader |
|  1 | Pirate    |  4 | Ninja       |
|  2 | Monkey    |  4 | Ninja       |
|  3 | Ninja     |  4 | Ninja       |
|  4 | Spaghetti |  4 | Ninja       |
+----+-----------+----+-------------+
16 rows in set (0.00 sec)#再执行:mysql> select * from A inner join B; 试一试#在执行mysql> select * from A cross join B on A.name = B.name; 试一试

实际上,在 MySQL 中(仅限于 MySQL) CROSS JOIN 与 INNER JOIN 的表现是一样的,在不指定 ON 条件得到的结果都是笛卡尔积,反之取得两个表完全匹配的结果。
INNER JOIN 与 CROSS JOIN 可以省略 INNER 或 CROSS 关键字,因此下面的 SQL 效果是一样的:

... FROM table1 INNER JOIN table2
... FROM table1 CROSS JOIN table2
... FROM table1 JOIN table2

六.Full join

mysql> select * from A left join B on B.name = A.name -> union -> select * from A right join B on B.name = A.name;
+------+-----------+------+-------------+
| id   | name      | id   | name        |
+------+-----------+------+-------------+
|    1 | Pirate    |    2 | Pirate      |
|    2 | Monkey    | NULL | NULL        |
|    3 | Ninja     |    4 | Ninja       |
|    4 | Spaghetti | NULL | NULL        |
| NULL | NULL      |    1 | Rutabaga    |
| NULL | NULL      |    3 | Darth Vader |
+------+-----------+------+-------------+
6 rows in set (0.00 sec)

全连接产生的所有记录(双方匹配记录)在表A和表B。如果没有匹配,则对面将包含null。

七.性能优化

1.显示(explicit) inner join VS 隐式(implicit) inner join

如:

select * from
table a inner join table b
on a.id = b.id;

VS

select a.*, b.*
from table a, table b
where a.id = b.id;

我在数据库中比较(10w数据)得之,它们用时几乎相同,第一个是显示的inner join,后一个是隐式的inner join。

参照:Explicit vs implicit SQL joins

2.left join/right join VS inner join

尽量用inner join.避免 LEFT JOIN 和 NULL.

在使用left join(或right join)时,应该清楚的知道以下几点:

(1). on与 where的执行顺序

ON 条件(“A LEFT JOIN B ON 条件表达式”中的ON)用来决定如何从 B 表中检索数据行。如果 B 表中没有任何一行数据匹配 ON 的条件,将会额外生成一行所有列为 NULL 的数据,在匹配阶段 WHERE 子句的条件都不会被使用。仅在匹配阶段完成以后,WHERE 子句条件才会被使用。它将从匹配阶段产生的数据中检索过滤。

所以我们要注意:在使用Left (right) join的时候,一定要在先给出尽可能多的匹配满足条件,减少Where的执行。如:

PS, 这部分有些不妥,感谢 wxweven 指正

这部分的内容,博主写的有些欠妥当,不知道博主有没有实际运行测试过,下面说说我的看法:

(1)首先关于on和where的用法,如果直接把where里面的条件拿到on里面去,结果是跟原来的不一致的,所以博主说的“在使用Left (right) join的时候,一定要在先给出尽可能多的匹配满足条件,减少Where的执行”是不成立的,因为筛选条件放在on或者where,产生的是不同的结果,不能说为了性能就把where中的条件放到on中。

可参考sql语句中join on和where用法的区别和联系

PASS

select * from A
inner join B on B.name = A.name
left join C on C.name = B.name
left join D on D.id = C.id
where C.status>1 and D.status=1;

Great

select * from A
inner join B on B.name = A.name
left join C on C.name = B.name and C.status>1
left join D on D.id = C.id and D.status=1

从上面例子可以看出,尽可能满足ON的条件,而少用Where的条件。从执行性能来看第二个显然更加省时。

(2).注意ON 子句和 WHERE 子句的不同

如作者举了一个列子:

mysql> SELECT * FROM product LEFT JOIN product_detailsON (product.id = product_details.id)AND product_details.id=2;
+----+--------+------+--------+-------+
| id | amount | id   | weight | exist |
+----+--------+------+--------+-------+
|  1 |    100 | NULL |   NULL |  NULL |
|  2 |    200 |    2 |     22 |     0 |
|  3 |    300 | NULL |   NULL |  NULL |
|  4 |    400 | NULL |   NULL |  NULL |
+----+--------+------+--------+-------+
4 rows in set (0.00 sec)mysql> SELECT * FROM product LEFT JOIN product_detailsON (product.id = product_details.id)WHERE product_details.id=2;
+----+--------+----+--------+-------+
| id | amount | id | weight | exist |
+----+--------+----+--------+-------+
|  2 |    200 |  2 |     22 |     0 |
+----+--------+----+--------+-------+
1 row in set (0.01 sec)

从上可知,第一条查询使用 ON 条件决定了从 LEFT JOIN的 product_details表中检索符合的所有数据行。第二条查询做了简单的LEFT JOIN,然后使用 WHERE 子句从 LEFT JOIN的数据中过滤掉不符合条件的数据行。

(3).尽量避免子查询,而用join

往往性能这玩意儿,更多时候体现在数据量比较大的时候,此时,我们应该避免复杂的子查询。如下:

PASS

insert into t1(a1) select b1 from t2 where not exists(select 1 from t1 where t1.id = t2.r_id); 

Great

insert into t1(a1)  
select b1 from t2  
left join (select distinct t1.id from t1 ) t1 on t1.id = t2.r_id   
where t1.id is null;  

这个可以参考mysql的exists与inner join 和 not exists与 left join 性能差别惊人

这篇关于Mysql Join语法解析与性能分析--通过集合来看join的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1036779

相关文章

MySQL 分区与分库分表策略应用小结

《MySQL分区与分库分表策略应用小结》在大数据量、复杂查询和高并发的应用场景下,单一数据库往往难以满足性能和扩展性的要求,本文将详细介绍这两种策略的基本概念、实现方法及优缺点,并通过实际案例展示如... 目录mysql 分区与分库分表策略1. 数据库水平拆分的背景2. MySQL 分区策略2.1 分区概念

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

MySQL中动态生成SQL语句去掉所有字段的空格的操作方法

《MySQL中动态生成SQL语句去掉所有字段的空格的操作方法》在数据库管理过程中,我们常常会遇到需要对表中字段进行清洗和整理的情况,本文将详细介绍如何在MySQL中动态生成SQL语句来去掉所有字段的空... 目录在mysql中动态生成SQL语句去掉所有字段的空格准备工作原理分析动态生成SQL语句在MySQL

MySQL中FIND_IN_SET函数与INSTR函数用法解析

《MySQL中FIND_IN_SET函数与INSTR函数用法解析》:本文主要介绍MySQL中FIND_IN_SET函数与INSTR函数用法解析,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一... 目录一、功能定义与语法1、FIND_IN_SET函数2、INSTR函数二、本质区别对比三、实际场景案例分

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

MySQL中的交叉连接、自然连接和内连接查询详解

《MySQL中的交叉连接、自然连接和内连接查询详解》:本文主要介绍MySQL中的交叉连接、自然连接和内连接查询,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、引入二、交php叉连接(cross join)三、自然连接(naturalandroid join)四

Mysql如何将数据按照年月分组的统计

《Mysql如何将数据按照年月分组的统计》:本文主要介绍Mysql如何将数据按照年月分组的统计方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql将数据按照年月分组的统计要的效果方案总结Mysql将数据按照年月分组的统计要的效果方案① 使用 DA

Mysql表如何按照日期字段的年月分区

《Mysql表如何按照日期字段的年月分区》:本文主要介绍Mysql表如何按照日期字段的年月分区的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、创键表时直接设置分区二、已有表分区1、分区的前置条件2、分区操作三、验证四、注意总结一、创键表时直接设置分区

mysql的基础语句和外键查询及其语句详解(推荐)

《mysql的基础语句和外键查询及其语句详解(推荐)》:本文主要介绍mysql的基础语句和外键查询及其语句详解(推荐),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋... 目录一、mysql 基础语句1. 数据库操作 创建数据库2. 表操作 创建表3. CRUD 操作二、外键