好书推荐-人工智能数学基础

2024-06-06 14:12

本文主要是介绍好书推荐-人工智能数学基础,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本书以零基础讲解为宗旨,面向学习数据科学与人工智能的读者,通俗地讲解每一个知识点,旨在帮助读者快速打下数学基础。
  

全书分为 4 篇,共 17 章。其中第 1 篇为数学知识基础篇,主要讲述了高等数学基础、微积分、泰勒公式与拉格朗日乘子法;第 2 篇为数学知识核心篇,主要讲述了线性代数基础、特征值与矩阵分解、概率论基础、随机变量与概率估计;第 3 篇为数学知识提高篇,主要讲述了数据科学的几种分布、核函数变换、熵与激活函数;第 4 篇为数学知识应用篇,主要讲述了回归分析、假设检验、相关分析、方差分析、聚类分析、贝叶斯分析等内容。
  本书适合准备从事数据科学与人工智能相关行业的读者。

加V ZZzhany527 回复【522】领取下载地址

目录  · · · · · ·

第1 章 人工智能与数学基础..........1
1.1 什么是人工智能............................ 2
1.2 人工智能的发展 ............................ 2
1.3 人工智能的应用 ............................ 4
1.4 学习人工智能需要哪些知识 ............. 5
1.5 为什么要学习数学 ......................... 7
1.6 本书包括的数学知识 ...................... 8
第 1 篇
基础篇................................................................. 9
第 2 章 高等数学基础 ................. 10
2.1 函数.......................................... 11
2.2 极限..........................................13
2.3 无穷小与无穷大...........................17
2.4 连续性与导数..............................19
2.5 偏导数...................................... 24
2.6 方向导数................................... 27
2.7 梯度......................................... 29
2.8 综合实例—梯度下降法求函数的最小值.......................................31
2.9 高手点拨................................... 35
2.10 习题....................................... 38
第 3 章 微积分..............................39
3.1 微积分的基本思想 ....................... 40
3.2 微积分的解释..............................41
3.3 定积分...................................... 42
3.4 定积分的性质............................. 44
3.5 牛顿—莱布尼茨公式.................... 45
3.6 综合实例—Python 中常用的定积分求解方法................................... 49
3.7 高手点拨....................................51
3.8 习题 ........................................ 52
第 4 章 泰勒公式与拉格朗日乘子法..............................53
4.1 泰勒公式出发点.......................... 54
4.2 一点一世界................................ 54
4.3 阶数和阶乘的作用....................... 59
4.4 麦克劳林展开式的应用..................61
4.5 拉格朗日乘子法.......................... 63
4.6 求解拉格朗日乘子法.................... 64
4.7 综合实例—编程模拟实现 sinx 的n 阶泰勒多项式并验证结果.................. 67
4.8 高手点拨 ................................... 68
4.9 习题 ......................................... 68
第2 篇
核心篇............................................................... 69
第 5 章 将研究对象形式化—线性代数基础 ..........................70
5.1 向量..........................................71
5.2 矩阵......................................... 73
5.3 矩阵和向量的创建....................... 77
5.4 特殊的矩阵................................ 85
5.5 矩阵基本操作..............................91
5.6 转置矩阵和逆矩阵....................... 96
5.7 行列式..................................... 101
5.8 矩阵的秩..................................104
5.9 内积与正交...............................108
5.10 综合实例—线性代数在实际问题中的应用 ....................................... 114
5.11 高手点拨 ................................ 121
5.12 习题......................................126
第 6 章 从数据中提取重要信息—特征值与矩阵分解..........127
6.1 特征值与特征向量 .....................128
6.2 特征空间..................................133
6.3 特征值分解...............................133
6.4 SVD 解决的问题.......................135
6.5 奇异值分解(SVD)..................136
6.6 综合实例 1—利用 SVD 对图像进行压缩 .......................................140
6.7 综合实例 2—利用 SVD 推荐商品 .......................................143
6.8 高手点拨..................................150
6.9 习题 .......................................154
第 7 章 描述统计规律 1—概率论基础................................155
7.1 随机事件及其概率 ......................156
7.2 条件概率.................................. 161
7.3 独立性.....................................162
7.4 随机变量..................................165
7.5 二维随机变量............................173
7.6 边缘分布..................................177
7.7 综合实例—概率的应用.............180
7.8 高手点拨.................................. 181
7.9 习题........................................184
第 8 章 描述统计规律 2—随机变量与概率估计........................185
8.1 随机变量的数字特征 ..................186
8.2 大数定律和中心极限定理.............193
8.3 数理统计基本概念......................199
8.4 最大似然估计........................... 203
8.5 最大后验估计........................... 206
8.6 综合实例 1—贝叶斯用户满意度预测 ...................................... 209
8.7 综合实例 2—最大似然法求解模型参数 .......................................217
8.8 高手点拨 ................................ 222
8.9 习题 ....................................... 224
第 3 篇
提高篇............................................................. 225
第 9 章 随机变量的几种分布...... 226
9.1 正态分布 ................................ 227
9.2 二项分布................................. 240
9.3 泊松分布................................. 250
9.4 均匀分布..................................261
9.5 卡方分布................................. 266
9.6 Beta 分布 .............................. 273
9.7 综合实例—估算棒球运动员的击中率 ...................................... 283
9.8 高手点拨 ................................ 285
9.9 习题 ...................................... 286
第 10 章 数据的空间变换—核函数变换............................. 287
10.1 相关知识简介 ......................... 288
10.2 核函数的引入 ......................... 290
10.3 核函数实例............................ 290
10.4 常用核函数.............................291
10.5 核函数的选择......................... 294
10.6 SVM 原理 ............................ 295
10.7 非线性 SVM 与核函数的引入.... 305
10.8 综合实例—利用 SVM 构建分类
问题......................................310
10.9 高手点拨................................315
10.10 习题 ................................... 322
第 11 章 熵与激活函数 .............. 323
11.1 熵和信息熵............................ 324
11.2 激活函数 ............................... 328
11.3 综合案例—分类算法中信息熵的应用...................................... 339
11.4 高手点拨 ................................341
11.5 习题 ..................................... 342
第4 篇
应用篇............................................................. 333
第 12 章 假设检验 ..................... 344
12.1 假设检验的基本概念................. 345
12.2 Z 检验 ...................................351
12.3 t 检验 ................................... 353
12.4 卡方检验............................... 358
12.5 假设检验中的两类错误 ..............361
12.6 综合实例 1—体检数据中的假设检验问题..................................... 363
12.7 综合实例 2—种族对求职是否有影响..................................... 369
12.8 高手点拨............................... 372
12.9 习题..................................... 374
13 章 相关分析...................... 375
13.1 相关分析概述.......................... 376
13.2 皮尔森相关系数....................... 378
13.3 相关系数的计算与假设检验........ 379
13.4 斯皮尔曼等级相关.................... 385
13.5 肯德尔系数............................. 392
13.6 质量相关分析.......................... 396
13.7 品质相关分析.......................... 400
13.8 偏相关与复相关....................... 403
13.9 综合实例—相关系数计算........ 405
13.10 高手点拨.............................. 407
13.11 习题..................................... 408
第 14 章 回归分析......................409
14.1 回归分析概述...........................410
14.2 回归方程推导及应用..................412
14.3 回归直线拟合优度.....................416
14.4 线性回归的模型检验..................417
14.5 利用回归直线进行估计和预测......419
14.6 多元与曲线回归问题..................421
14.7 Python 工具包....................... 426
14.8 综合实例—个人医疗保费预测任务...................................... 432
14.9 高手点拨................................ 444
14.10 习题..................................... 446
第 15 章 方差分析......................449
15.1 方差分析概述.......................... 448
15.2 方差的比较............................. 450
15.3 方差分析.................................451
15.4 综合实例—连锁餐饮用户评级分析...................................... 460
15.5 高手点拨................................ 464
15.6 习题...................................... 466
第 16 章 聚类分析......................469
16.1 聚类分析概述.......................... 468
16.2 层次聚类................................ 470
16.3 K-Means 聚类...................... 484
16.4 DBSCAN 聚类....................... 494
16.5 综合实例—聚类分析.............. 499
16.6 高手点拨.................................512
16.7 习题.......................................512
第 17 章 贝叶斯分析....................513
17.1 贝叶斯分析概述........................514
17.2 MCMC 概述.......................... 520
17.3 MCMC 采样 ......................... 525
17.4 Gibbs 采样........................... 529
17.5 综合实例—利用 PyMC3 实现随机模拟样本分布......................... 532
17.6 高手点拨............................... 539
17.7 习题..................................... 540

这篇关于好书推荐-人工智能数学基础的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1036335

相关文章

Spring Boot 中整合 MyBatis-Plus详细步骤(最新推荐)

《SpringBoot中整合MyBatis-Plus详细步骤(最新推荐)》本文详细介绍了如何在SpringBoot项目中整合MyBatis-Plus,包括整合步骤、基本CRUD操作、分页查询、批... 目录一、整合步骤1. 创建 Spring Boot 项目2. 配置项目依赖3. 配置数据源4. 创建实体类

Java子线程无法获取Attributes的解决方法(最新推荐)

《Java子线程无法获取Attributes的解决方法(最新推荐)》在Java多线程编程中,子线程无法直接获取主线程设置的Attributes是一个常见问题,本文探讨了这一问题的原因,并提供了两种解决... 目录一、问题原因二、解决方案1. 直接传递数据2. 使用ThreadLocal(适用于线程独立数据)

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=

uva 11044 Searching for Nessy(小学数学)

题意是给出一个n*m的格子,求出里面有多少个不重合的九宫格。 (rows / 3) * (columns / 3) K.o 代码: #include <stdio.h>int main(){int ncase;scanf("%d", &ncase);while (ncase--){int rows, columns;scanf("%d%d", &rows, &col

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言