【论文+代码】VISION PERMUTATOR 即插即用的多层感知器(MLP)模块

本文主要是介绍【论文+代码】VISION PERMUTATOR 即插即用的多层感知器(MLP)模块,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 论文
    • 模块
    • 创新点
  • 代码
    • 模块
    • 分析
      • 代码讲解

论文

本文的研究成果在项目的实现过程中起到了至关重要的作用。以下是本文的详细信息:

文章链接: VISION PERMUTATOR: A PERMUTABLE MLP-LIKE ARCHITECTURE FOR VISUAL RECOGNITION

模块

创新点

在多个方面进行了创新和改进,以下是项目的主要创新点:

代码

代码链接 https://github.com/houqb/VisionPermutator/blob/main

模块

核心算法和模型训练。

import torch.nn as nnclass VisionPermutator(nn.Module):""" Vision Permutator视觉排列器,是一个用于图像处理的神经网络模型"""def __init__(self, layers, img_size=224, patch_size=4, in_chans=3, num_classes=1000,embed_dims=None, transitions=None, segment_dim=None, mlp_ratios=None, skip_lam=1.0,qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.,norm_layer=nn.LayerNorm, mlp_fn=WeightedPermuteMLP):super().__init__()self.num_classes = num_classes# 将输入图像分割成小块,并进行初步的嵌入self.patch_embed = PatchEmbed(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dims[0])network = []# 构建整个网络的架构for i in range(len(layers)):# 添加基础模块到网络中stage = basic_blocks(embed_dims[i], i, layers, segment_dim[i], mlp_ratio=mlp_ratios[i], qkv_bias=qkv_bias,qk_scale=qk_scale, attn_drop=attn_drop_rate, drop_path_rate=drop_path_rate, norm_layer=norm_layer, skip_lam=skip_lam,mlp_fn=mlp_fn)network.append(stage)if i >= len(layers) - 1:breakif transitions[i] or embed_dims[i] != embed_dims[i+1]:# 如果需要转换,添加下采样层patch_size = 2 if transitions[i] else 1network.append(Downsample(embed_dims[i], embed_dims[i+1], patch_size))# 将网络模块列表封装成 nn.ModuleListself.network = nn.ModuleList(network)# 添加归一化层self.norm = norm_layer(embed_dims[-1])# 分类头部,进行最终的类别预测self.head = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity()self.apply(self._init_weights)def _init_weights(self, m):# 初始化模型权重if isinstance(m, nn.Linear):trunc_normal_(m.weight, std=.02)if isinstance(m, nn.Linear) and m.bias is not None:nn.init.constant_(m.bias, 0)elif isinstance(m, nn.LayerNorm):nn.init.constant_(m.bias, 0)nn.init.constant_(m.weight, 1.0)def get_classifier(self):# 获取分类器return self.headdef reset_classifier(self, num_classes, global_pool=''):# 重置分类器,用于迁移学习或微调self.num_classes = num_classesself.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()def forward_embeddings(self, x):# 处理输入图像,进行初步的嵌入x = self.patch_embed(x)# 将张量维度从 (B, C, H, W) 转换为 (B, H, W, C)x = x.permute(0, 2, 3, 1)return xdef forward_tokens(self, x):# 依次通过网络的每个模块for idx, block in enumerate(self.network):x = block(x)# 展平张量以适应分类头部的输入要求B, H, W, C = x.shapex = x.reshape(B, -1, C)return xdef forward(self, x):# 前向传播的入口函数# 首先,进行初步嵌入处理x = self.forward_embeddings(x)# 接着,通过所有网络模块进行处理x = self.forward_tokens(x)# 最后,进行归一化处理,并通过分类头部进行类别预测x = self.norm(x)# 将所有位置的特征平均,得到最终的预测结果return self.head(x.mean(1))

分析

https://github.com/houqb/VisionPermutator/blob/main/models/vip.py

import torch.nn as nnclass VisionPermutator(nn.Module):""" Vision Permutator视觉排列器,是一个用于图像处理的神经网络模型"""def __init__(self, layers, img_size=224, patch_size=4, in_chans=3, num_classes=1000,embed_dims=None, transitions=None, segment_dim=None, mlp_ratios=None, skip_lam=1.0,qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.,norm_layer=nn.LayerNorm, mlp_fn=WeightedPermuteMLP):super().__init__()self.num_classes = num_classes# 将输入图像分割成小块,并进行初步的嵌入self.patch_embed = PatchEmbed(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dims[0])network = []# 构建整个网络的架构for i in range(len(layers)):# 添加基础模块到网络中stage = basic_blocks(embed_dims[i], i, layers, segment_dim[i], mlp_ratio=mlp_ratios[i], qkv_bias=qkv_bias,qk_scale=qk_scale, attn_drop=attn_drop_rate, drop_path_rate=drop_path_rate, norm_layer=norm_layer, skip_lam=skip_lam,mlp_fn=mlp_fn)network.append(stage)if i >= len(layers) - 1:breakif transitions[i] or embed_dims[i] != embed_dims[i+1]:# 如果需要转换,添加下采样层patch_size = 2 if transitions[i] else 1network.append(Downsample(embed_dims[i], embed_dims[i+1], patch_size))# 将网络模块列表封装成 nn.ModuleListself.network = nn.ModuleList(network)# 添加归一化层self.norm = norm_layer(embed_dims[-1])# 分类头部,进行最终的类别预测self.head = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity()self.apply(self._init_weights)def _init_weights(self, m):# 初始化模型权重if isinstance(m, nn.Linear):trunc_normal_(m.weight, std=.02)if isinstance(m, nn.Linear) and m.bias is not None:nn.init.constant_(m.bias, 0)elif isinstance(m, nn.LayerNorm):nn.init.constant_(m.bias, 0)nn.init.constant_(m.weight, 1.0)def get_classifier(self):# 获取分类器return self.headdef reset_classifier(self, num_classes, global_pool=''):# 重置分类器,用于迁移学习或微调self.num_classes = num_classesself.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()def forward_embeddings(self, x):# 处理输入图像,进行初步的嵌入x = self.patch_embed(x)# 将张量维度从 (B, C, H, W) 转换为 (B, H, W, C)x = x.permute(0, 2, 3, 1)return xdef forward_tokens(self, x):# 依次通过网络的每个模块for idx, block in enumerate(self.network):x = block(x)# 展平张量以适应分类头部的输入要求B, H, W, C = x.shapex = x.reshape(B, -1, C)return xdef forward(self, x):# 前向传播的入口函数# 首先,进行初步嵌入处理x = self.forward_embeddings(x)# 接着,通过所有网络模块进行处理x = self.forward_tokens(x)# 最后,进行归一化处理,并通过分类头部进行类别预测x = self.norm(x)# 将所有位置的特征平均,得到最终的预测结果return self.head(x.mean(1))

代码讲解

forward 函数是模型的主要执行路径,它将输入图像转化为嵌入特征,通过网络模块进行处理,归一化后通过分类头部输出预测结果。这一步步的处理确保了模型能够有效地提取图像特征,并进行准确的分类。

  1. 初始化函数 (__init__)

    • 初始化模型,设置各种参数,并构建网络结构。
    • patch_embed 将输入图像分割成小块并进行初步的嵌入。
    • network 是一个包含多个阶段和下采样层的模块列表。
    • normhead 分别是归一化层和分类头部,用于最终的预测。
  2. 权重初始化函数 (_init_weights)

    • 初始化线性层和归一化层的权重和偏置。
  3. 获取分类器函数 (get_classifier)

    • 返回分类头部,主要用于评估或微调。
  4. 重置分类器函数 (reset_classifier)

    • 重置分类头部,以适应不同的分类任务。
  5. 前向嵌入函数 (forward_embeddings)

    • 对输入图像进行初步处理,将其分割成小块并嵌入到更高维度的特征空间。
  6. 前向处理函数 (forward_tokens)

    • 通过所有网络模块进行处理,将特征进一步提取和转换。
  7. 前向传播函数 (forward)

    • 这个函数是整个模型的核心:
      1. 首先调用 forward_embeddings 对输入图像进行初步处理,将其转换为嵌入特征。
      2. 然后调用 forward_tokens 依次通过所有网络模块进行特征提取和转换。
      3. 接着对特征进行归一化处理。
      4. 最后,通过分类头部进行类别预测。这里使用了全局平均池化 (x.mean(1)),将所有位置的特征平均,得到一个最终的特征向量,输入到分类头部进行预测。

这篇关于【论文+代码】VISION PERMUTATOR 即插即用的多层感知器(MLP)模块的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1036076

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

代码随想录冲冲冲 Day39 动态规划Part7

198. 打家劫舍 dp数组的意义是在第i位的时候偷的最大钱数是多少 如果nums的size为0 总价值当然就是0 如果nums的size为1 总价值是nums[0] 遍历顺序就是从小到大遍历 之后是递推公式 对于dp[i]的最大价值来说有两种可能 1.偷第i个 那么最大价值就是dp[i-2]+nums[i] 2.不偷第i个 那么价值就是dp[i-1] 之后取这两个的最大值就是d

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

D4代码AC集

贪心问题解决的步骤: (局部贪心能导致全局贪心)    1.确定贪心策略    2.验证贪心策略是否正确 排队接水 #include<bits/stdc++.h>using namespace std;int main(){int w,n,a[32000];cin>>w>>n;for(int i=1;i<=n;i++){cin>>a[i];}sort(a+1,a+n+1);int i=1